Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The making of the somite: molecular events in vertebrate segmentation

Key Points

  • During somitogenesis, presomitic mesoderm (PSM) can be divided into at least two distinct regions: region I (posterior PSM) and region II (anterior PSM), which correspond to the two distinct cellular states, state I and state II.

  • No signs of segment specification can be detected at a molecular or cellular level in region I, but PSM cells acquire rostrocaudal polarity and become competent to segment once they have reached region II.

  • Cyclical gene expression that reflects an underlying segmentation clock is translated into Notch activity that keeps the oscillations of neighbouring PSM cells synchronized in region I.

  • Expression of delta-like 1 (Dll1) in region II, which is regulated by mesoderm posterior 2 (Mesp2) through the Notch signalling pathway, determines the rostrocaudal polarity of somites.

  • Notch signalling can be either presenilin 1 (Psen1) dependent or independent; the former is involved in inducing Dll1 expression and the latter in inhibiting Dll1 expression. Mesp2 might stimulate the inhibitory pathway and suppress the induction pathway.

  • The transition from state I to state II is controlled by the level of fibroblast growth factor (Fgf) signalling. A high level of Fgf activation in the posterior PSM maintains PSM cells in an immature state, whereas low Fgf levels accelerate the maturation process of PSM cells in the anterior PSM.

  • Because the Fgf activation domain retreats as somitogenesis proceeds, the wavefront, which is the interphase between region I and region II, gradually moves back. So, periodic interactions between the wavefront and the oscillation wave create a regularly spaced somite border.

Abstract

The reiterated structures of the vertebrate axial skeleton, spinal nervous system and body muscle are based on the metameric structure of somites, which are formed in a dynamic morphogenetic process. Somite segmentation requires the activity of a biochemical oscillator known as the somite-segmentation clock. Although the molecular identity of the clock remains unknown, genetic and experimental evidence has accumulated that indicates how the periodicity of somite formation is generated, how the positions of segment borders are determined, and how the rostrocaudal polarity within somite primordia is generated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Somitogenesis in mouse and zebrafish embryos.
Figure 2: Components of the Notch signalling pathway that might be involved in somitogenesis.
Figure 3: Expression pattern of segmentation genes in the presomitic mesoderm.
Figure 4: Genetic evidence for the requirement of Mesp2 in establishing rostrocaudal polarity.
Figure 5: Manipulation of an Fgf signal alters somite size in zebrafish.
Figure 6: A model of somite segmentation.

Similar content being viewed by others

References

  1. Gossler, A. & Hrabe de Angelis, M. Somitogenesis. Curr. Top. Dev. Biol. 38, 225–287 (1998).An excellent overview of vertebrate somitogenesis.

    Article  CAS  Google Scholar 

  2. Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquie, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648 (1997).This article provided the first molecular evidence that presomitic mesoderm cells show oscillatory behaviour by the expression of c-hairy1.

    Article  CAS  Google Scholar 

  3. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  Google Scholar 

  4. Joyner, A. L. & Martin, G. R. En-1 and En-2, two mouse genes with sequence homology to the Drosophila engrailed gene: expression during embryogenesis. Genes Dev. 1, 29–38 (1987).

    Article  CAS  Google Scholar 

  5. Marti, E., Takada, R., Bumcrot, D. A., Sasaki, H. & McMahon, A. P. Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development 121, 2537–2547 (1995).

    CAS  PubMed  Google Scholar 

  6. Gavin, B. J., McMahon, J. A. & McMahon, A. P. Expression of multiple novel Wnt-1/int-1-related genes during fetal and adult mouse development. Genes Dev. 4, 2319–2332 (1990).

    Article  CAS  Google Scholar 

  7. Christ, B. & Ordahl, C. P. Early stages of chick somite development. Anat. Embryol. 191, 381–396 (1995).

    Article  CAS  Google Scholar 

  8. Aoyama, H. & Asamoto, K. Determination of somite cells: independence of cell differentiation and morphogenesis. Development 104, 15–28 (1988).

    CAS  PubMed  Google Scholar 

  9. Stern, C. D. & Keynes, R. J. Interactions between somite cells: the formation and maintenance of segment boundaries in the chick embryo. Development 99, 261–272 (1987).

    CAS  PubMed  Google Scholar 

  10. Conlon, R. A., Reaume, A. G. & Rossant, J. Notch1 is required for the coordinate segmentation of somites. Development 121, 1533–1545 (1995).

    CAS  Google Scholar 

  11. Hrabe de Angelis, M., McIntyre, J. & Gossler, A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386, 717–721 (1997).

    Article  CAS  Google Scholar 

  12. Kusumi, K. et al. The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nature Genet. 19, 274–278 (1998).

    Article  CAS  Google Scholar 

  13. Wong, P. C. et al. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387, 288–292 (1997).

    Article  CAS  Google Scholar 

  14. Zhang, N. & Gridley, T. Defects in somite formation in lunatic fringe-deficient mice. Nature 394, 374–377 (1998).

    Article  CAS  Google Scholar 

  15. Evrard, Y. A., Lun, Y., Aulehla, A., Gan, L. & Johnson, R. L. Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394, 377–381 (1998).

    Article  CAS  Google Scholar 

  16. Oka, C. et al. Disruption of the mouse RBP-Jκ gene results in early embryonic death. Development 121, 3291–3301 (1995).

    CAS  Google Scholar 

  17. Saga, Y., Hata, N., Koseki, H. & Taketo, M. M. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev. 11, 1827–1839 (1997).Shows that the transcription factor Mesp2 is involved in establishing the rostrocaudal polarity of somites.

    Article  CAS  Google Scholar 

  18. Van Eeden, F. J. et al. Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development 123, 153–164 (1996).

    CAS  PubMed  Google Scholar 

  19. Haddon, C., Jiang, Y. J., Smithers, L. & Lewis, J. Delta–Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb mutant. Development 125, 4637–4644 (1998).

    CAS  Google Scholar 

  20. Jiang, Y. J. et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 408, 475–479 (2000).Proposes that the function of Notch signalling is to keep the oscillations of neighbouring PSM cells synchronized.

    Article  CAS  Google Scholar 

  21. Holley, S. A., Geisler, R. & Nusslein-Volhard, C. Control of her1 expression during zebrafish somitogenesis by a Delta-dependent oscillator and an independent wave-front activity. Genes Dev. 14, 1678–1690 (2000).This report shows that aei is deltaD in zebrafish.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bettenhausen, B., Hrabe de Angelis, M., Simon, D., Guenet, J. L. & Gossler, A. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121, 2407–2418 (1995).

    CAS  PubMed  Google Scholar 

  23. Takahashi, Y. et al. Mesp2 initiates somite segmentation through the Notch signalling pathway. Nature Genet. 25, 390–396 (2000).A genetic study that shows how Mesp2 works in the Notch signalling pathway.

    Article  CAS  Google Scholar 

  24. Aulehla, A. & Johnson, R. L. Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation. Dev. Biol. 207, 49–61 (1999).

    Article  CAS  Google Scholar 

  25. Sawada, A. et al. Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development 127, 1691–1702 (2000).

    CAS  Google Scholar 

  26. Jen, W. C., Gawantka, V., Pollet, N., Niehrs, C. & Kintner, C. Periodic repression of Notch pathway genes governs the segmentation of Xenopus embryos. Genes Dev. 13, 1486–1499 (1999).

    Article  CAS  Google Scholar 

  27. Yoon, J. K., Moon, R. T. & Wold, B. The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes. Dev. Biol. 222, 376–391 (2000).

    Article  CAS  Google Scholar 

  28. Duband, J. L. et al. Adhesion molecules during somitogenesis in the avian embryo. J. Cell Biol. 104, 1361–1374 (1987).

    Article  CAS  Google Scholar 

  29. Dubrulle, J., McGrew, M. J. & Pourquie, O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–232 (2001).A crucial paper indicating that FGF functions to keep PSM cells in an immature state in the chick.

    Article  CAS  Google Scholar 

  30. McGrew, M. J., Dale, J. K., Fraboulet, S. & Pourquie, O. The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr. Biol. 8, 979–982 (1998).

    Article  CAS  Google Scholar 

  31. Jouve, C. et al. Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. Development 127, 1421–1429 (2000).

    CAS  PubMed  Google Scholar 

  32. Leimeister, C. et al. Oscillating expression of c-Hey2 in the presomitic mesoderm suggests that the segmentation clock may use combinatorial signaling through multiple interacting bHLH factors. Dev. Biol. 227, 91–103 (2000).

    Article  CAS  Google Scholar 

  33. Kokubo, H., Lun, Y. & Johnson, R. L. Identification and expression of a novel family of bHLH cDNAs related to Drosophila hairy and enhancer of split. Biochem. Biophys. Res. Commun. 260, 459–465 (1999).

    Article  CAS  Google Scholar 

  34. Schnell, S. & Maini, P. K. Clock and induction model for somitogenesis. Dev. Dyn. 217, 415–420 (2000).

    Article  CAS  Google Scholar 

  35. Blair, S. S. Notch signaling: Fringe really is a glycosyltransferase. Curr. Biol. 10, R608–R612 (2000).

    Article  CAS  Google Scholar 

  36. Aoyama, H. & Asamoto, K. The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: experimental confirmation of the resegmentation theory using chick-quail chimeras. Mech. Dev. 99, 71–82 (2000).

    Article  CAS  Google Scholar 

  37. Mansouri, A., Voss, A. K., Thomas, T., Yokota, Y. & Gruss, P. Uncx4.1 is required for the formation of the pedicles and proximal ribs and acts upstream of Pax9. Development 127, 2251–2258 (2000).

    CAS  PubMed  Google Scholar 

  38. Leitges, M., Neidhardt, L., Haenig, B., Herrmann, B. G. & Kispert, A. The paired homeobox gene Uncx4.1 specifies pedicles, transverse processes and proximal ribs of the vertebral column. Development 127, 2259–2267 (2000).

    CAS  PubMed  Google Scholar 

  39. Barrantes, I. B. et al. Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Curr. Biol. 9, 470–480 (1999).

    Article  CAS  Google Scholar 

  40. Koizumi, K. et al. The role of presenilin 1 during somite segmentation. Development 128, 1391–1402 (2001).

    CAS  PubMed  Google Scholar 

  41. Kim, S. H., Jen, W. C., De Robertis, E. M. & Kintner, C. The protocadherin PAPC establishes segmental boundaries during somitogenesis in Xenopus embryos. Curr. Biol. 13, 821–830 (2000).

    Article  Google Scholar 

  42. Sawada, A. et al. Fgf/MAPK signaling is a crucial positional cue in somite boundary formation. Development (in the press).Indicates that Fgf functions to keep PSM cells in an immature state in zebrafish.

  43. Yamaguchi, T. P., Conlon, R. A. & Rossant, J. Expression of the fibroblast growth factor receptor FGFR-1/flg during gastrulation and segmentation in the mouse embryo. Dev. Biol. 152, 75–88 (1992).

    Article  CAS  Google Scholar 

  44. Yamaguchi, T. P., Harpal, K., Henkemeyer, M. & Rossant, J. Fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev. 8, 3032–3044 (1994).

    Article  CAS  Google Scholar 

  45. Sun, X., Meyers, E. N., Lewandoski, M. & Martin, G. R. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834–1846 (1999).

    Article  CAS  Google Scholar 

  46. Reifers, F. et al. Fgf8 is mutated in acerebellar (ace) mutants and is required for maintenance of midbrain–hindbrain boundary development and somitogenesis. Development 125, 2381–2395 (1998).

    CAS  Google Scholar 

  47. Gotoh, Y. & Nishida, E. Signals for mesoderm induction. Roles of fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK) pathway. Biochim. Biophys. Acta 1288, F1–F7 (1996).

    PubMed  Google Scholar 

  48. Bagnall, K. M., Higgins, S. J. & Sanders, E. J. The contribution made by a single somite to the vertebral column: experimental evidence in support of resegmentation using the chick–quail chimaera model. Development 103, 69–85 (1988).The first demonstration of resegmenation in which half-somites are implicated.

    CAS  PubMed  Google Scholar 

  49. Goldstein, R. S. & Kalcheim, C. Determination of epithelial half-somites in skeletal morphogenesis. Development 116, 441–445 (1992).

    CAS  PubMed  Google Scholar 

  50. Stickney, H. L., Barresi, M. J. & Devoto, S. H. Somite development in zebrafish. Dev. Dyn. 219, 287–303 (2000).

    Article  CAS  Google Scholar 

  51. Morin-Kensicki, E. M. & Eisen, J. S. Sclerotome development and peripheral nervous system segmentation in embryonic zebrafish. Development 124, 159–167 (1997).

    CAS  PubMed  Google Scholar 

  52. Jen, W. C., Wettstein, D., Turner, D., Chitnis, A. & Kintner, C. The Notch ligand, X-Delta-2, mediates segmentation of the paraxial mesoderm in Xenopus embryos. Development 124, 1169–1178 (1997).

    CAS  PubMed  Google Scholar 

  53. Cooke, J. & Zeeman, E. C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455–476 (1976).

    Article  CAS  Google Scholar 

  54. Meinhardt, H. in Somites in Developing Embryos (eds Bellairs, R., Ede, D. A. & Lash, J. W.) 179–191 (Plenum Publ. Corpl., USA, 1986).

    Book  Google Scholar 

  55. Primmett, D. R., Stern, C. D. & Keynes, R. J. Heat shock causes repeated segmental anomalies in the chick embryo. Development 104, 331–339 (1988).

    CAS  PubMed  Google Scholar 

  56. Primmett, D. R., Norris, W. E., Carlson, G. J., Keynes, R. J. & Stern, C. D. Periodic segmental anomalies induced by heat shock in the chick embryo are associated with the cell cycle. Development 105, 119–130 (1989).

    CAS  PubMed  Google Scholar 

  57. Collier, J. R. et al. A cell cycle model for somitogenesis: mathematical formulation and numerical simulation. J. Theor. Biol. 207, 305–316 (2000).

    Article  CAS  Google Scholar 

  58. Flint, O. P., Ede, D. A., Wilby, O. K. & Proctor, J. Control of somite number in normal and amputated mutant mouse embryos: an experimental and a theoretical analysis. J. Embryol. Exp. Morphol. 45, 189–202 (1978).

    CAS  PubMed  Google Scholar 

  59. Polezhaev, A. A. A mathematical model of the mechanism of vertebrate somitic segmentation. J. Theor. Biol. 156, 169–181 (1992).

    Article  CAS  Google Scholar 

  60. Kerszberg, M. & Wolpert, L. A clock and trail model for somite formation, specialization and polarization. J. Theor. Biol. 205, 505–510 (2000).

    Article  CAS  Google Scholar 

  61. Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA 95, 8108–8112 (1998).

    Article  CAS  Google Scholar 

  62. Struhl, G. & Greenwald, I. Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila. Proc. Natl Acad. Sci. USA 98, 229–234 (2001).

    Article  CAS  Google Scholar 

  63. Berezovska, O. et al. Rapid Notch1 nuclear translocation after ligand binding depends on presenilin-associated γ-secretase activity. Ann. NY Acad. Sci. 920, 223–226 (2000).

    Article  CAS  Google Scholar 

  64. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  Google Scholar 

  65. Qi, H. et al. Processing of the Notch ligand Delta by the metalloprotease Kuzbanian. Science 283, 91–94 (1999).

    Article  CAS  Google Scholar 

  66. Bruckner, K., Perez, L., Clausen, H. & Cohen, S. Glycosyltransferase activity of Fringe modulates Notch–Delta interactions. Nature 406, 411–415 (2000).

    Article  CAS  Google Scholar 

  67. Moloney, D. J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).

    Article  CAS  Google Scholar 

  68. Yoon, J. K. & Wold, B. The bHLH regulator pMesogenin1 is required for maturation and segmentation of paraxial mesoderm. Genes Dev. 14, 3204–3214 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumiko Saga.

Related links

Related links

DATABASES

FlyBase 

Delta

Fringe

Furin

Kuzbanian

Notch

Serrate 

LocusLink 

brachyury

cerberus 1

c-hairy1

Delta

DeltaC

deltaD

Delta2

Dll1

Dll3

engrailed

FGF8

fgf8

Fgfr1

her1

Hes1

Hey

Lfng

LFNG

Meso1

mesogenin

mespb

Mesp2

Notch

Notch1

Notch2

PAPC

Psen1

Rbpsuh

sonic hedgehog

Thylacine1

Uncx4.1

Wnt

Glossary

PARAXIAL MESODERM

A subpopulation of mesoderm that lies on both sides of the neural tube, which gives rise to somites.

CEPHALOCHORDATE

A subphylum of chordates that includes the amphioxus Branchiostoma, which has a notochord, dorsal nervous system and segmented trunk, but lacks characters such as complex paired sensory organs and a true brain.

PRESOMITIC MESODERM

Precursor unsegmented mesoderm, which generates somites on segmentation.

CYCLING GENE

A gene, the expression of which oscillates rostrocaudally in the presomitic mesoderm.

ROSTROCAUDAL POLARITY

The difference between the rostral (anterior) and caudal (posterior) halves of a somite that underlies a difference in future developmental fates.

SEGMENT-POLARITY GENE

A gene originally identified in Drosophila early development, the expression of which divides the embryo into units that are 14 segments wide.

SCLEROTOME

Mesenchymal cell mass located in the medial region of a somite, from which the axial skeleton derives

PRIMITIVE STREAK

A longitudinal cleft formed on the surface of the amniote early embryo by a convergence of cells. At the onset of gastrulation, epiblast cells migrate towards and into the streak, and in so doing acquire mesodermal cell fate.

TAILBUD

The caudal end of the tail region at which gastrulation continues to generate precursors for the paraxial mesoderm and the neural tube.

EPITHELIAL SOMITE

Spherical epithelial structure made up of epithelial cells that differentiate from mesenchymal cells on segmentation.

AMNIOTE

Animal, such as reptile, bird or mammal, whose eggs contain an amnion — a membrane that surrounds the embryo and helps retain fluids.

SURFACE ECTODERM

The outermost germ layer of the embryo that develops during gastrulation. Also the cell layer that covers the paraxial mesoderm, from which several diffusible factors are secreted that induce somitic cells to take on the dermomyotome fate.

DERMOMYOTOME

Epithelial cell layer in the dorsolateral region of the somite that faces the ectoderm and further differentiates into the most dorsal dermatome, which later differentiates into dermis and myotome — future skeletal muscles.

NEURONAL HYPERPLASIA

Excessive formation of neuronal tissues due to transdifferentiation as a result of defects in Notch signalling.

HOMOTYPIC INTERACTION

Protein interaction between molecules of the same type.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saga, Y., Takeda, H. The making of the somite: molecular events in vertebrate segmentation. Nat Rev Genet 2, 835–845 (2001). https://doi.org/10.1038/35098552

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35098552

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing