Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I

Abstract

Cohesins, which have been characterized in budding yeast1,2 and Xenopus3, are multisubunit protein complexes involved in sister chromatid cohesion. Regulation of the interactions among different cohesin subunits and the assembly/disassembly of the cohesin complex to chromatin are key steps in chromosome segregation. We previously characterized the mammalian STAG3 protein as a component of the synaptonemal complex that is specifically expressed in germinal cells4, although its function in meiosis remains unknown. Here we show that STAG3 has a role in sister chromatid arm cohesion during mammalian meiosis I. Immunofluorescence results in prophase I cells suggest that STAG3 is a component of the axial/lateral element of the synaptonemal complex. In metaphase I, STAG3 is located at the interchromatid domain and is absent from the chiasma region. In late anaphase I and the later stages of meiosis, STAG3 is not detected. STAG3 interacts with the structural maintenance chromosome proteins SMC1 and SMC3, which have been reported to be subunits of the mitotic cohesin complex2,3. We propose that STAG3 is a sister chromatid arm cohesin that is specific to mammalian meiosis I.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STAG3 in leptotene and colocalization with SCP1 and SCP3 in monkey spermatocytes.
Figure 2: STAG3 localizes at the AEs/LEs in mouse prophase I.
Figure 3: STAG3 localizes at the interchromatid domain in metaphase I and is lost from chromosome arms during the metaphase-to-anaphase I transition.
Figure 4: Release of the specific meiotic cohesin STAG3 during metaphase-to-anaphase I transition.
Figure 5: Anti-STAG3 antibodies immunoprecipitate SMC1 and SMC3 from testis nuclear extracts.

Similar content being viewed by others

References

  1. Michaelis, C., Ciosk, R. & Nasmyth, K. Cell 91, 35–45 (1997).

    Article  CAS  Google Scholar 

  2. Toth, A. et al. Genes Dev. 13, 320–333 (1999).

    Article  CAS  Google Scholar 

  3. Losada, A., Hirano, M. & Hirano T. Genes Dev. 12, 1986–1997 (1998).

    Article  CAS  Google Scholar 

  4. Pezzi, N. et al. FASEB J. 14, 581–592 (2000).

    Article  CAS  Google Scholar 

  5. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Nature 400, 37–42 (1999).

    Article  CAS  Google Scholar 

  6. Darwiche, N., Freeman, L. A. & Strunnikov, A. Gene 233, 39–47 (1999).

    Article  CAS  Google Scholar 

  7. Strunnikov, A. & Jessberger, R. Eur. J. Biochem. 263, 6–13 (1999).

    Article  CAS  Google Scholar 

  8. Carramolino, L. et al. Gene 195, 151–159 (1997).

    Article  CAS  Google Scholar 

  9. Valdeolmillos, A. et al. DNA Cell Biol. 17, 699–706 (1998).

    Article  CAS  Google Scholar 

  10. Losada, A., Yocochi, T., Kobayashi, R. & Hirano, T. J. Cell Biol. 150, 405–416 (2000).

    Article  CAS  Google Scholar 

  11. Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B. H. & Peters, J. M. J. Cell Biol. 151, 749–762 (2000).

    Article  CAS  Google Scholar 

  12. Parisi, S. et al. Mol. Cell. Biol. 19, 3515–3528 (1999).

    Article  CAS  Google Scholar 

  13. Watanabe, Y. & Nurse, P. Nature 400, 461–464 (1999).

    Article  CAS  Google Scholar 

  14. Buonomo, S. B. et al. Cell 103, 387–398 (2000).

    Article  CAS  Google Scholar 

  15. Klein, F. et al. Cell 98, 91–103 (1999).

    Article  CAS  Google Scholar 

  16. Moens, P. B. & Spyropoulos, B. Chromosoma 104, 175–182 (1995).

    Article  CAS  Google Scholar 

  17. Meuwissen, R. L. J. et al. EMBO J. 11, 5091–5100 (1992).

    Article  CAS  Google Scholar 

  18. Lammers, J. H. M. et al. Mol. Cell. Biol. 14, 1137–1146 (1994).

    Article  CAS  Google Scholar 

  19. Page, J., Suja, J. A., Santos, J. L. & Rufas J. S. Chromosome Res. 6, 639–642 (1998).

    Article  CAS  Google Scholar 

  20. Scherthan, H. et al. J. Cell Biol. 134, 1109–1125 (1996).

    Article  CAS  Google Scholar 

  21. Hirano, T. Annu. Rev. Biochem. 69, 115–144 (2000).

    Article  CAS  Google Scholar 

  22. Suja, J. A., Antonio, C., Debec, A. & Rufas, J. S. J. Cell. Sci. 112, 2957–2969 (1999).

    CAS  Google Scholar 

  23. Zetka, M. C., Kawasaki, I., Strome, S. & Müller, F. Genes Dev. 13, 2258–2270 (1999).

    Article  CAS  Google Scholar 

  24. Tóth, A. et al. Cell 103, 1155–1168 (2000).

    Article  Google Scholar 

  25. Eijpe, M., Heyting, C., Gross, B. & Jessberger, R. J. Cell Sci. 113, 673–682 (2000).

    CAS  Google Scholar 

  26. Tomonaga, T. et al. Genes & Dev. 14, 2757–2770 (2000).

    Article  CAS  Google Scholar 

  27. Krawchuck, M. D., DeVeaux, L. C. & Wahls, W. P. Genetics 153, 57–68 (1999).

    Google Scholar 

  28. del Mazo, J., Martín-Sempere, M. J., Kremer, L. & Avila, J. Cytogenet. Cell Genet. 43, 201–206 (1986).

    Article  CAS  Google Scholar 

  29. Alsheimer, M. & Benavente, R. Exp. Cell Res. 228, 181–188 (1996).

    Article  CAS  Google Scholar 

  30. Jessberger, R., Podust, V., Hubscher, U. & Berg, P. J. Biol. Chem. 268, 15070–15079 (1993).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank J. P. Albar, F. Roncal and L. Gómez for help with anti-STAG3 antibody generation; C. Heyting for the gift of anti-SCP1 and anti-SCP3 antisera; R. Benavente for guinea-pig anti-SCP3 antibody; and A. Strunnikov for anti-mSMCB and anti-mSMCD sera; A. Martínez for technical help; J. M. Buesa, C. Carreiro, I. Barthelemy and A. Valdeolmillos for helpful discussions; and C. Mark for editorial assistance. This work was partially supported by a grant from the Dirección General de Enseñanza Superior e Investigación Científica (Spain). The Department of Immunolgy and Oncology was founded and is supported by the Spanish National Research Council (CSIC) and the Pharmacia Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Barbero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prieto, I., Suja, J., Pezzi, N. et al. Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat Cell Biol 3, 761–766 (2001). https://doi.org/10.1038/35087082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087082

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing