Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse

Abstract

The development of chemical synapses is regulated by interactions between pre- and postsynaptic cells. At the vertebrate skeletal neuromuscular junction, the organization of an acetylcholine receptor (AChR)-rich postsynaptic apparatus has been well studied. Much evidence suggests that the nerve-derived protein agrin activates muscle-specific kinase (MuSK) to cluster AChRs through the synapse-specific cytoplasmic protein rapsyn. But how postsynaptic differentiation is initiated, or why most synapses are restricted to an ‘end-plate band’ in the middle of the muscle remains unknown. Here we have used genetic methods to address these issues. We report that the initial steps in postsynaptic differentiation and formation of an end-plate band require MuSK and rapsyn, but are not dependent on agrin or the presence of motor axons. In contrast, the subsequent stages of synaptic growth and maintenance require nerve-derived agrin, and a second nerve-derived signal that disperses ectopic postsynaptic apparatus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aneural AChR clusters at initial stage of synaptogenesis.
Figure 2: Distinct roles of agrin and MuSK in initiating AChR clustering.
Figure 3: Clustering of AChRs in the absence of the motor nerve.
Figure 4: Localization of AChRα mRNA and AChE in the presumptive end-plate band of aneural muscle.
Figure 5: MuSK is required for AChR clustering in aneural muscle.
Figure 6: Multiple steps in postsynaptic differentiation in the neuromuscular junction.

Similar content being viewed by others

References

  1. Burden, S. J. The formation of neuromuscular synapses. Genes Dev. 12, 133–148 (1998).

    Article  CAS  Google Scholar 

  2. Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    Article  CAS  Google Scholar 

  3. Nitkin, R. M. et al. Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J. Cell Biol. 105, 2471–2478 (1987).

    Article  CAS  Google Scholar 

  4. McMahan, U. J. The agrin hypothesis. Cold Spring Harb. Symp. Quant. Biol. 55, 407–418 (1990).

    Article  CAS  Google Scholar 

  5. Ferns, M. et al. RNA splicing regulates agrin-mediated acetylcholine receptor clustering activity on cultured myotubes. Neuron 8, 1079–1086 (1992).

    Article  CAS  Google Scholar 

  6. Ruegg, M. A. et al. The agrin gene codes for a family of basal lamina proteins that differ in function and distribution. Neuron 8, 691–699 (1992).

    Article  CAS  Google Scholar 

  7. Gautam, M. et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85, 525–535 (1996).

    Article  CAS  Google Scholar 

  8. Burgess, R., Nguyen, Q. T., Son, Y.-J., Lichtman, J. W. & Sanes, J. R. Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23, 33–44 (1999).

    Article  CAS  Google Scholar 

  9. Glass, D. J. et al. Kinase domain of the muscle-specific receptor tyrosine kinase (MuSK) is sufficient for phosphorylation but not clustering of acetylcholine receptors: required role for the MuSK ectodomain? Proc. Natl Acad. Sci. USA 94, 8848–8853 (1997).

    Article  ADS  CAS  Google Scholar 

  10. DeChiara, T. M. et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85, 510–512 (1996).

    Article  Google Scholar 

  11. Gautam, M. et al. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377, 232–236 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Braithwaite, A. W. & Harris, A. J. Neural influence on acetylcholine receptor clusters in embryonic development of skeletal muscles. Nature 279, 549–551 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Harris, A. J. Embryonic growth and innervation of rat skeletal muscles. III. Neural regulation of junctional and extra-junctional acetylcholine receptor clusters. R. Soc. Phil. Trans. B 293, 287–314 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Yang, X., Li, W., Prescott, E. D., Burden, S. J. & Wang, J. C. DNA topoisomerase IIβ and neural development. Science 287, 131–134 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Lupa, M. T. & Hall, Z. W. Progressive restriction of synaptic vesicle protein to the nerve terminal during development of the neuromuscular junction. J. Neurosci. 9, 3937–3945 (1989).

    Article  CAS  Google Scholar 

  16. Morris, J. K. et al. Genetic rescue of cardiac defect in erbB2 null mutant mice reveals essential roles of erbB2 in development of the peripheral nervous system. Neuron 23, 273–283 (1999).

    Article  CAS  Google Scholar 

  17. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  18. Lin, W. et al. Aberrant development of motor axons and synapses in erbB2-deficient mice. Proc. Natl Acad. Sci. USA 97, 1299–1304 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Dahm, L. M. & Landmesser, L. T. The regulation of synaptogenesis during normal development and following activity blockade. J. Neurosci. 11, 238–255 (1991).

    Article  CAS  Google Scholar 

  20. Godfrey, E. W. et al. Basal lamina components are concentrated in premuscle masses and at early acetylcholine receptor clusters in chick embryo hindlimb muscles. Dev. Biol. 130, 471–486 (1988).

    Article  CAS  Google Scholar 

  21. Fallon, J. R. & Gelfman, C. E. Agrin-related molecules are concentrated at acetylcholine receptor clusters in normal and aneural developing muscle. J. Cell Biol. 108, 1527–1535 (1989).

    Article  CAS  Google Scholar 

  22. Hoch, W., Ferns, M., Campanelli, J. T., Hall, Z. W. & Scheller, R. H. Developmental regulation of highly active alternatively spliced forms of agrin. Neuron 11, 479–490 (1993).

    Article  CAS  Google Scholar 

  23. Halfter, W. et al. Distribution and substrate properties of agrin, a heparan sulfate proteoglycan of developing axonal pathways. J. Comp. Neurol. 383, 1–17 (1997).

    Article  CAS  Google Scholar 

  24. Bloch, R. J. & Pumplin, D. W. Molecular events in synaptogenesis: nerve-muscle adhesion and postsynaptic differentiation. Am. J. Physiol. 254, C345–C364 (1988).

    Article  CAS  Google Scholar 

  25. Arber, S. et al. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659–674 (1999).

    Article  CAS  Google Scholar 

  26. Thaler, J. et al. Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23, 675–687 (1999).

    Article  CAS  Google Scholar 

  27. Masiakowski, P. & Yancopoulos, G. D. The Wnt receptor CRD domain is also found in MuSK and related orphan receptor tyrosine kinases. Curr. Biol. 8, R407 (1998).

    Article  CAS  Google Scholar 

  28. Xu, Y. K. & Nusse, R. The frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr. Biol. 8, R405–R406 (1998).

    Article  CAS  Google Scholar 

  29. Hall, A. C., Lucas, F. R. & Salinas, P. C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100, 525–535 (2000).

    Article  CAS  Google Scholar 

  30. Zhou, H., Glass, D. J., Yancopoulos, G. D. & Sanes, J. R. Distinct domains of MuSK mediate its abilities to induce and to associate with postsynaptic specializations. J. Cell Biol. 146, 1133–1146 (1999).

    Article  CAS  Google Scholar 

  31. Zhang, M. & McLennan, I. S. During secondary myotube formation, primary myotubes preferentially absorb new nuclei at their ends. Dev. Dyn. 204, 168–177 (1995).

    Article  CAS  Google Scholar 

  32. Bennett, M. R. & Pettigrew, A. G. The formation of neuromuscular synapses. Cold Spring Harb. Symp. Quant. Biol. 40, 409–424 (1976).

    Article  CAS  Google Scholar 

  33. Anderson, M. J. & Cohen, M. W. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J. Physiol. (Lond.) 268, 757–773 (1977).

    Article  CAS  Google Scholar 

  34. Frank, E. & Fischbach, G. D. Early events in neuromuscular junction formation in vitro. Induction of acetylcholine receptor clusters in the postsynaptic membane and morphology of newly formed nerve-muscle synapses. J. Cell. Biol. 83, 143–158 (1979).

    Article  CAS  Google Scholar 

  35. Hume, R. I., Role, L. W. & Fischbach, G. D. Acetylcholine release from growth cones detected with patches of acetylcholine receptor-rich membranes. Nature 305, 632–637 (1983).

    Article  ADS  CAS  Google Scholar 

  36. Young, S. H. & Poo, M.-M. Spontaneous release of transmitter from growth cones of embryonic neurones. Nature 305, 634–637 (1983).

    Article  ADS  CAS  Google Scholar 

  37. Goldman, D., Brenner, H. R. & Heinemann, S. Acetylcholine receptor α-, β-, γ-, and δ-subunit mRNA levels are regulated by muscle activity. Neuron 1, 329–333 (1988).

    Article  CAS  Google Scholar 

  38. Klarsfeld, A. et al. An acetylcholine receptor α-subunit promoter conferring preferential synaptic expression in muscle of transgenic mice. EMBO J. 10, 625–632 (1991).

    Article  CAS  Google Scholar 

  39. Kuromi, H. & Kidokoro, Y. Nerve disperses preexisting acetylcholine receptor clusters prior to induction of receptor accumulation in Xenopus muscle cultures. Dev. Biol. 103, 53–61 (1984).

    Article  CAS  Google Scholar 

  40. Davey, D. F. & Cohen, M. W. Localization of acetylcholine receptors and cholinesterase on nerv-contacted and noncontacted muscle cells grown in the presence of agents that block action potentials. J. Neurosci. 6, 673–680 (1986).

    Article  CAS  Google Scholar 

  41. Kues, W. A., Brenner, H. R., Sakmann, B. & Witzemann, V. Local neurotrophic repression of gene transcripts encoding fetal AChRs at rat neuromuscular synapses. J. Cell Biol. 130, 949–957 (1995).

    Article  CAS  Google Scholar 

  42. Rupp, F. et al. Structure and chromosomal localization of the mammalian agrin gene. J. Neurosci. 12, 3535–3544 (1992).

    Article  CAS  Google Scholar 

  43. Enomoto, H. et al. GFRα1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21, 317–324 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Kehrl for HB9 mutant mice, and G. Yancopoulos, D. Glass and T. DeChiara for MuSK mutant mice. We thank S. Anant, C. Kintner, F. Gage and S. Heinemann for comments on the manuscript. This work was supported by grants from the NIH (J.R.S., S.L.P. and K.F.L.), the Leducq Foundation and NIH training grant (W.L.) and an NIH postdoctoral fellowship (R.W.B). S.L.P. and K.F.L are Pew Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Fen Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, W., Burgess, R., Dominguez, B. et al. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057–1064 (2001). https://doi.org/10.1038/35074025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35074025

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing