Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasticity of motor systems after incomplete spinal cord injury

Key Points

  • Functional recovery is observed in people with incomplete spinal cord injury, but the degree of recovery is variable. In addition to the cellular changes that occur at the lesion site, the central nervous system undergoes substantial reorganization that might occur at two levels: in pre-existing circuits by modifications of synaptic strength or by the appearance of new circuits through sprouting and anatomical reorganization.

  • The cerebral cortex can reorganize following peripheral damage. The mechanisms involved might include changes in the efficacy of cortical synapses, alterations in the degree of synaptic inhibition and anatomical changes such as the growth of axon arbours.

  • Subcortical structures also experience reorganization after spinal cord injury, as illustrated by the case of the red nucleus. The red nucleus can promote a certain degree of functional recovery after transections of the corticospinal tract. This recovery seems to be related to the anatomical plasticity of rubral afferents as well as the intrarubral circuitry.

  • Spinal pattern generators also show significant plasticity following lesions of the corticospinal tract. In fact, training can enhance functional recovery mediated by these pattern generators. This observation was made originally in animals, but the existence of spinal pattern generators in humans has led to the development of new therapeutic approaches to treat people with spinal cord injury. The mechanism that underlies pattern-generator-mediated recovery might involve an increase in spinal excitability or the formation of new circuits.

  • Descending motor pathways can anatomically reorganize to innervate novel targets. Their anatomical plasticity is influenced by myelin; specifically, by inhibitory proteins such as Nogo-A/NI-250, myelin-associated glycoprotein and proteoglycans. Similarly, the neurotrophic factors, as well as other molecules expressed during development, might be involved in process outgrowth after injury, but definitive evidence is missing.

Abstract

Although spontaneous regeneration of lesioned fibres is limited in the adult central nervous system, many people that suffer from incomplete spinal cord injuries show significant functional recovery. This recovery process can go on for several years after the injury and probably depends on the reorganization of circuits that have been spared by the lesion. Synaptic plasticity in pre-existing pathways and the formation of new circuits through collateral sprouting of lesioned and unlesioned fibres are important components of this recovery process. These reorganization processes might occur in cortical and subcortical motor centres, in the spinal cord below the lesion, and in the spared fibre tracts that connect these centres. Functional and anatomical evidence exists that spontaneous plasticity can be potentiated by activity, as well as by specific experimental manipulations. These studies prepare the way to a better understanding of rehabilitation treatments and to the development of new approaches to treat spinal cord injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of the motor cortex.
Figure 2: Electromyograph activity during bipedal hindlimb stepping in a step-trained and a non-trained cat before (–2 or –5 weeks) and 1, 4 and 12 weeks after spinalization.
Figure 3: Schematic representation of the corticospinal reorganization occurring after pyramidotomy and mAb IN-1 treatment.

Similar content being viewed by others

References

  1. Horner, P. J. & Gage, F. H. Regenerating the damaged central nervous system. Nature 407, 963– 970 (2000).

    CAS  PubMed  Google Scholar 

  2. Schwab, M. E. & Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 76, 319–370 (1996).

    CAS  PubMed  Google Scholar 

  3. Bunge, R. P., Puckett, W. R. & Hiester, E. D. Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv. Neurol. 72, 305– 315 (1997).

    CAS  PubMed  Google Scholar 

  4. Burns, S. P., Golding, D. G., Rolle, W. A., Graziani, V. & Ditunno, J. F. Recovery of ambulation in motor-incomplete tetraplegia. Arch. Phys. Med. Rehabil. 78, 1169–1172 (1997).

    CAS  PubMed  Google Scholar 

  5. Waters, R. L., Sie, I., Adkins, R. H. & Yakura, J. S. Injury pattern effect on motor recovery after traumatic spinal cord injury. Arch. Phys. Med. Rehabil. 76, 440–443 (1995).

    CAS  PubMed  Google Scholar 

  6. Blight, A. R. Remyelination, revascularization, and recovery of function in experimental spinal cord injury. Adv. Neurol. 59, 91– 104 (1993).

    CAS  PubMed  Google Scholar 

  7. Little, J. W., Ditunno, J. F. Jr, Stiens, S. A. & Harris, R. M. Incomplete spinal cord injury: neuronal mechanisms of motor recovery and hyperreflexia. Arch. Phys. Med. Rehabil. 80, 587–599 (1999).

    CAS  PubMed  Google Scholar 

  8. Waxman, S. G. Demyelination in spinal cord injury. J. Neurol. Sci. 91, 1–14 (1989).

    CAS  PubMed  Google Scholar 

  9. Gensert, J. M. & Goldman, J. E. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19, 197–203 (1997).

    CAS  PubMed  Google Scholar 

  10. Jones, E. G. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu. Rev. Neurosci. 23, 1–37 (2000).

    CAS  PubMed  Google Scholar 

  11. Donoghue, J. P. Plasticity of adult sensorimotor representations. Curr. Opin. Neurobiol. 5, 749–754 ( 1995).

    CAS  PubMed  Google Scholar 

  12. Wu, C. W. & Kaas, J. H. Reorganization in primary motor cortex of primates with long-standing therapeutic amputations. J. Neurosci. 19, 7679–7697 (1999).A very extensive anatomical and electrophysiological study showing the capacities of the primary motor cortex to reorganize after trauma in non-human primates.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanes, J. N., Suner, S. & Donoghue, J. P. Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Exp. Brain Res. 79, 479–491 (1990).

    CAS  PubMed  Google Scholar 

  14. Donoghue, J. P., Suner, S. & Sanes, J. N. Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Exp. Brain Res. 79, 492– 503 (1990).

    CAS  PubMed  Google Scholar 

  15. Qi, H. X., Stepniewska, I. & Kaas, J. H. Reorganization of primary motor cortex in adult macaque monkeys with long-standing amputations. J. Neurophysiol. 84, 2133–2147 (2000).

    CAS  PubMed  Google Scholar 

  16. Nudo, R. J. & Milliken, G. W. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J. Neurophysiol. 75, 2144– 2149 (1996).

    CAS  PubMed  Google Scholar 

  17. Cohen, L. G., Bandinelli, S., Findley, T. W. & Hallett, M. Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain 114, 615– 627 (1991).

    PubMed  Google Scholar 

  18. Bruehlmeier, M. et al. How does the human brain deal with a spinal cord injury? Eur. J. Neurosci. 10, 3918–3922 (1998).

    CAS  PubMed  Google Scholar 

  19. Levy, W. J., Amassian, V. E., Traad, M. & Cadwell, J. Focal magnetic coil stimulation reveals motor cortical system reorganized in humans after traumatic quadriplegia. Brain Res. 510, 130–134 (1990).

    PubMed  Google Scholar 

  20. Topka, H., Cohen, L. G., Cole, R. A. & Hallett, M. Reorganization of corticospinal pathways following spinal cord injury. Neurology 41, 1276–1283 (1991).

    CAS  PubMed  Google Scholar 

  21. Ziemann, U., Hallett, M. & Cohen, L. G. Mechanisms of deafferentation-induced plasticity in human motor cortex. J. Neurosci. 18, 7000–7007 (1998). Introduces a non-invasive experimental model for evaluating mechanisms of deafferentation-induced plasticity in intact adult humans. In addition, identifies several mechanisms implicated in deafferentation-induced plasticity of the human motor cortex.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ziemann, U., Corwell, B. & Cohen, L. G. Modulation of plasticity in human motor cortex after forearm ischemic nerve block. J. Neurosci. 18, 1115–1123 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Huntley, G. W. Correlation between patterns of horizontal connectivity and the extend of short-term representational plasticity in rat motor cortex. Cereb. Cortex 7, 143–156 ( 1997).

    CAS  PubMed  Google Scholar 

  24. Weiss, D. S. & Keller, A. Specific patterns of intrinsic connections between representation zones in the rat motor cortex. Cereb. Cortex 4, 205–214 ( 1994).

    CAS  PubMed  Google Scholar 

  25. Jain, N., Catania, K. C. & Kaas, J. H. Deactivation and reactivation of somatosensory cortex after dorsal spinal cord injury. Nature 386, 495–498 (1997).

    CAS  PubMed  Google Scholar 

  26. Jacobs, K. M. & Donoghue, J. P. Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251, 944–957 (1991). Identifies intracortical inhibitory circuits as a substrate for fast and accurate modulation of cortical motor representations.

    CAS  PubMed  Google Scholar 

  27. Chen, R., Corwell, B., Yaseen, Z., Hallett, M. & Cohen, L. G. Mechanisms of cortical reorganization in lower-limb amputees. J. Neurosci. 18, 3443– 3450 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hess, G. & Donoghue, J. P. Long-term potentiation and long-term depression of horizontal connections in rat motor cortex. Acta Neurobiol. Exp. (Warsz) 56, 397–405 (1996).

    CAS  Google Scholar 

  29. Hess, G. & Donoghue, J. P. Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. J. Neurophysiol. 71, 2543–2547 (1994).

    CAS  PubMed  Google Scholar 

  30. Hess, G. & Donoghue, J. P. Long-term depression of horizontal connections in rat motor cortex. Eur. J. Neurosci. 8, 658–665 (1996).

    CAS  PubMed  Google Scholar 

  31. Das, A. & Gilbert, C. D. Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 375, 780 –784 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Darian-Smith, C. & Gilbert, C. D. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368, 737–740 ( 1994).

    CAS  PubMed  Google Scholar 

  33. Florence, S. L., Taub, H. B. & Kaas, J. H. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science 282, 1117–1121 (1998).

    CAS  PubMed  Google Scholar 

  34. Antal, M. Termination areas of corticobulbar and corticospinal fibres in the rat. J. Hirnforsch 25, 647–659 (1984).

    CAS  PubMed  Google Scholar 

  35. Lawrence, D. G. & Kuypers, H. G. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91, 1– 14 (1968).

    CAS  PubMed  Google Scholar 

  36. Lawrence, D. G. & Kuypers, H. G. The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain 91, 15–36 (1968).

    CAS  PubMed  Google Scholar 

  37. Ghez, C. Input–output relations of the red nucleus in the cat. Brain Res. 98, 93–308 ( 1975).

    CAS  PubMed  Google Scholar 

  38. Hyland, B. Neural activity related to reaching and grasping in rostral and caudal regions of rat motor cortex. Behav. Brain Res. 94, 255–269 (1998).

    CAS  PubMed  Google Scholar 

  39. Jarratt, H. & Hyland, B. Neuronal activity in rat red nucleus during forelimb reach-to-grasp movements. Neuroscience 88, 629–642 (1999).

    CAS  PubMed  Google Scholar 

  40. Belhaj-Saif, A. & Cheney, P. D. Plasticity in the distribution of the red nucleus output to forearm muscles after unilateral lesions of the pyramidal tract. J. Neurophysiol. 83 , 3147–3153 (2000). Detailed electrophysiological study showing a spontaneous reorganization of red nucleus output following corticospinal tract lesion in monkey. This study introduces nicely the concept of the subcortical motor centre reorganization and suggests its contribution to functional recovery.

    CAS  PubMed  Google Scholar 

  41. Nah, S. H. & Leong, S. K. Bilateral corticofugal projection to the red nucleus after neonatal lesions in the albino rat. Brain Res. 107, 433–436 ( 1976).

    CAS  PubMed  Google Scholar 

  42. Z'Graggen, W. J. et al. Compensatory sprouting and impulse rerouting after unilateral pyramidal tract lesion in neonatal rats. J. Neurosci. 20, 6561–6569 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wenk, C. A., Thallmair, M., Kartje, G. L. & Schwab, M. E. Increased corticofugal plasticity after unilateral cortical lesions combined with neutralization of the IN-1 antigen in adult rats. J. Comp. Neurol. 410, 143–157 ( 1999).

    CAS  PubMed  Google Scholar 

  44. Z'Graggen, W. J., Metz, G. A., Kartje, G. L., Thallmair, M. & Schwab, M. E. Functional recovery and enhanced corticofugal plasticity after unilateral pyramidal tract lesion and blockade of myelin-associated neurite growth inhibitors in adult rats. J. Neurosci. 18, 4744–4757 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Thallmair, M. et al. Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nature Neurosci. 1, 124–131 ( 1998).References 44 and 45 describe a surprising capability of the corticospinal system to reorganize anatomically after its lesion and treatment of the animals with the monoclonal antibody IN-1. This anatomical reorganization parallels an almost complete functional recovery in a precise forelimb grasping task.

    CAS  PubMed  Google Scholar 

  46. Murakami, F., Katsumaru, H., Saito, K. & Tsukahara, N. A quantitative study of synaptic reorganization in red nucleus neurons after lesion of the nucleus interpositus of the cat: an electron microscopic study involving intracellular injection of horseradish peroxidase. Brain Res. 242 , 41–53 (1982).

    CAS  PubMed  Google Scholar 

  47. Katsumaru, H., Murakami, F., Wu, J. Y. & Tsukahara, N. Sprouting of GABAergic synapses in the red nucleus after lesions of the nucleus interpositus in the cat. J. Neurosci. 6, 2864– 2874 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsukahara, N., Fujito, Y., Oda, Y. & Maeda, J. Formation of functional synapses in the adult cat red nucleus from the cerebrum following cross-innervating of forelimb flexor and extensor nerves. I. Appearance of new synaptic potentials . Exp. Brain Res. 45, 1– 12 (1982).

    CAS  PubMed  Google Scholar 

  49. Murakami, F., Katsumaru, H., Maeda, J. & Tsukahara, N. Reorganization of corticorubral synapses following cross-innervation of flexor and extensor nerves of adult cat: a quantitative electron microscopic study. Brain Res. 306, 299–306 (1984).

    CAS  PubMed  Google Scholar 

  50. Grillner, S. & Wallen, P. Central pattern generators for locomotion, with special reference to vertebrates. Annu. Rev. Neurosci. 8, 233–261 (1985).

    CAS  PubMed  Google Scholar 

  51. Pearson, K. G. Neural adaptation in the generation of rhythmic behavior. Annu. Rev. Physiol. 62, 723–753 (2000).Extensive and comprehensive review of the adaptive capabilities of the spinal motor circuits.

    CAS  PubMed  Google Scholar 

  52. Bizzi, E., Tresch, M. C., Saltiel, P. & d'Avella, A. New perspectives on spinal motor systems. Nature Rev. Neurosci. 1, 101–108 ( 2000).

    CAS  Google Scholar 

  53. Jankowska, E., Jukes, M. G., Lund, S. & Lundberg, A. The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurons of flexors and extensors. Acta Physiol. Scand. 70, 369–388 (1967).

    CAS  PubMed  Google Scholar 

  54. Grillner, S. & Wallen, P. On the cellular bases of vertebrate locomotion. Prog. Brain Res. 123, 297– 309 (1999).

    CAS  PubMed  Google Scholar 

  55. Yang, J. F., Stephens, M. J. & Vishram, R. Infant stepping: a method to study the sensory control of human walking. J. Physiol. 507, 927– 937 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Forssberg, H. A. Developmental Model of Human Locomotion (eds Grillner, S., Stein, P. S. G., Stuart, D. G., Forssberg, H. & Herman, R. M.) (Macmillan, London, 1986).

    Google Scholar 

  57. Rossignol, S., Drew, T., Brustein, E. & Jiang, W. Locomotor performance and adaptation after partial or complete spinal cord lesions in the cat. Prog. Brain Res. 123, 349–365 (1999).

    CAS  PubMed  Google Scholar 

  58. Lovely, R. G., Gregor, R. J., Roy, R. R. & Edgerton, V. R. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp. Neurol. 92, 421– 435 (1986).

    CAS  PubMed  Google Scholar 

  59. de Leon, R. D., Hodgson, J. A., Roy, R. R. & Edgerton, V. R. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J. Neurophysiol. 79, 1329–1340 (1998). This paper investigates in qualitative and quantitative details the influence of treadmill training on locomotion of cats that have received a complete spinal cord transection. They show that spinal cord circuits disconnected from their supraspinal inputs are able to 'learn' a motor task.

    CAS  PubMed  Google Scholar 

  60. de Leon, R. D., Hodgson, J. A., Roy, R. R. & Edgerton, V. R. Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J. Neurophysiol. 80, 83– 91 (1998).

    CAS  PubMed  Google Scholar 

  61. Hodgson, J. A., Roy, R. R., de Leon, R., Dobkin, B. & Edgerton, V. R. Can the mammalian lumbar spinal cord learn a motor task? Med. Sci. Sports Exercise 26, 1491 –1497 (1994).

    CAS  Google Scholar 

  62. De Leon, R. D., Hodgson, J. A., Roy, R. R. & Edgerton, V. R. Retention of hindlimb stepping ability in adult spinal cats after the cessation of step training. J. Neurophysiol. 81, 85 –94 (1999).Treadmill stepping recovery observable after training in spinal cats persists for weeks after cessation of the training period. The training effect then declines progressively but can be quickly re-induced by shorter training sessions.

    CAS  PubMed  Google Scholar 

  63. Dietz, V., Colombo, G. & Jensen, L. Locomotor activity in spinal man. Lancet 344, 1260–1263 ( 1994).

    CAS  PubMed  Google Scholar 

  64. Wernig, A., Muller, S., Nanassy, A. & Cagol, E. Laufband therapy based on 'rules of spinal locomotion' is effective in spinal cord injured persons. Eur. J. Neurosci. 7, 823– 829 (1995).

    CAS  PubMed  Google Scholar 

  65. Wernig, A., Nanassy, A. & Muller, S. Maintenance of locomotor abilities following Laufband (treadmill) therapy in para- and tetraplegic persons: follow-up studies. Spinal Cord 36, 744–749 (1998).References 63 65 show that training effects similar to those observed in animal models of spinal cord injury can be observed in complete and incomplete paraplegic human patients. Thus, weight support and training on a moving treadmill ameliorate the walking abilities of incomplete lesioned patients. This recovery can be maintained for extensive periods of time in 'domestic surroundings' whenever the patients keep a minimum of activity.

    CAS  PubMed  Google Scholar 

  66. Roy, R. R. & Acosta, L. Fiber type and fiber size changes in selected thigh muscles six months after low thoracic spinal cord transection in adult cats: exercise effects. Exp. Neurol. 92, 675–685 (1986).

    CAS  PubMed  Google Scholar 

  67. Roy, R. R. et al. Training effects on soleus of cats spinal cord transected (T12–13) as adults. Muscle Nerve 21, 63–71 (1998).

    CAS  PubMed  Google Scholar 

  68. Pearson, K. G. Proprioceptive regulation of locomotion. Curr. Opin. Neurobiol. 5, 786–791 ( 1995).

    CAS  PubMed  Google Scholar 

  69. Fouad, K. & Pearson, K. G. Modification of group I field potentials in the intermediate nucleus of the cat spinal cord after chronic axotomy of an extensor nerve. Neurosci. Lett. 236, 9–12 (1997).

    CAS  PubMed  Google Scholar 

  70. Pearson, K. G. & Misiaszek, J. E. Use-dependent gain change in the reflex contribution to extensor activity in walking cats . Brain Res. 883, 131–134 (2000).

    CAS  PubMed  Google Scholar 

  71. Tillakaratne, N. J. et al. Increased expression of glutamate decarboxylase (GAD(67)) in feline lumbar spinal cord after complete thoracic spinal cord transection . J. Neurosci. Res. 60, 219– 230 (2000).

    CAS  PubMed  Google Scholar 

  72. de Leon, R. D., Tamaki, H., Hodgson, J. A., Roy, R. R. & Edgerton, V. R. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat. J. Neurophysiol. 82, 359– 369 (1999).

    CAS  PubMed  Google Scholar 

  73. Wolpaw, J. R. The complex structure of a simple memory. Trends Neurosci. 20, 588–594 (1997).

    CAS  PubMed  Google Scholar 

  74. Ribotta, M. G. et al. Activation of locomotion in adult chronic spinal rats is achieved by transplantation of embryonic raphe cells reinnervating a precise lumbar level. J. Neurosci. 20, 5144– 5152 (2000).

    CAS  PubMed  Google Scholar 

  75. Woolf, C. J., Shortland, P. & Coggeshall, R. E. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355, 75– 78 (1992).

    CAS  PubMed  Google Scholar 

  76. Wilson, P. & Kitchener, P. D. Plasticity of cutaneous primary afferent projections to the spinal dorsal horn. Prog. Neurobiol. 48, 105–129 ( 1996).

    CAS  PubMed  Google Scholar 

  77. Murray, M. & Goldberger, M. E. Restitution of function and collateral sprouting in the cat spinal cord: the partially hemisected animal . J. Comp. Neurol. 158, 19– 36 (1974).One of the first studies to introduce the concept of collateral sprouting in the spinal cord as a mechanism of functional recovery.

    CAS  PubMed  Google Scholar 

  78. Helgren, M. E. & Goldberger, M. E. The recovery of postural reflexes and locomotion following low thoracic hemisection in adult cats involves compensation by undamaged primary afferent pathways. Exp. Neurol. 123, 17–34 (1993).

    CAS  PubMed  Google Scholar 

  79. Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765– 1769 (2000).

    CAS  PubMed  Google Scholar 

  80. Krenz, N. R. & Weaver, L. C. Sprouting of primary afferent fibers after spinal cord transection in the rat. Neuroscience 85, 443–458 (1998).

    CAS  PubMed  Google Scholar 

  81. Windle, W. F., Smart, J. O. & Beers, J. J. Residual function after subtotal spinal cord transection in adult cats. Neurology 8, 518– 521 (1958).

    CAS  PubMed  Google Scholar 

  82. Eidelberg, E., Walden, J. G. & Nguyen, L. H. Locomotor control in macaque monkeys. Brain 104, 647–663 ( 1981).

    CAS  PubMed  Google Scholar 

  83. Nathan, P. W. Effects on movement of surgical incisions into the human spinal cord. Brain 117, 337–346 ( 1994).

    PubMed  Google Scholar 

  84. Rouiller, E. M., Liang, F. Y., Moret, V. & Wiesendanger, M. Trajectory of redirected corticospinal axons after unilateral lesion of the sensorimotor cortex in neonatal rat; a phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study. Exp. Neurol. 114, 53– 65 (1991).

    CAS  Google Scholar 

  85. Aisaka, A. et al. Two modes of corticospinal reinnervation occur close to spinal targets following unilateral lesion of the motor cortex in neonatal hamsters . Neuroscience 90, 53–67 (1999).

    CAS  PubMed  Google Scholar 

  86. Kuang, R. Z. & Kalil, K. Specificity of corticospinal axon arbors sprouting into denervated contralateral spinal cord. J. Comp. Neurol. 302, 461–472 (1990).

    CAS  PubMed  Google Scholar 

  87. Barth, T. M. & Stanfield, B. B. The recovery of forelimb-placing behavior in rats with neonatal unilateral cortical damage involves the remaining hemisphere. J. Neurosci. 10, 3449– 3459 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. McMahon, S. B. & Kett-White, R. Sprouting of peripherally regenerating primary sensory neurons in the adult central nervous system. J. Comp. Neurol. 304, 307– 315 (1991).

    CAS  PubMed  Google Scholar 

  89. Prendergast, J. & Misantone, L. J. Sprouting by tracts descending from the midbrain to the spinal cord: the result of thoracic funiculotomy in the newborn, 21-day-old, and adult rat. Exp. Neurol. 69, 458–480 ( 1980).

    CAS  PubMed  Google Scholar 

  90. Aoki, M., Fujito, Y., Satomi, H., Kurosawa, Y. & Kasaba, T. The possible role of collateral sprouting in the functional restitution of corticospinal connections after spinal hemisection. Neurosci. Res. 3, 617–627 (1986).

    CAS  PubMed  Google Scholar 

  91. Goldstein, B., Little, J. W. & Harris, R. M. Axonal sprouting following incomplete spinal cord injury: an experimental model. J. Spinal Cord Med. 20, 200–206 (1997).

    CAS  PubMed  Google Scholar 

  92. Gimenez y Ribotta, M. et al. Oxysterol (7 beta-hydroxycholesteryl-3-oleate) promotes serotonergic reinnervation in the lesioned rat spinal cord by reducing glial reaction. J. Neurosci. Res. 41, 79–95 (1995).

    CAS  PubMed  Google Scholar 

  93. Kapfhammer, J. P. & Schwab, M. E. Inverse patterns of myelination and GAP-43 expression in the adult CNS: neurite growth inhibitors as regulators of neuronal plasticity? J. Comp. Neurol. 340, 194–206 (1994).

    CAS  PubMed  Google Scholar 

  94. Varga, Z. M., Bandtlow, C. E., Erulkar, S. D., Schwab, M. E. & Nicholls, J. G. The critical period for repair of CNS of neonatal opossum (Monodelphis domestica) in culture: correlation with development of glial cells, myelin and growth-inhibitory molecules. Eur. J. Neurosci. 7, 2119–2129 (1995).

    CAS  PubMed  Google Scholar 

  95. Raisman, G. & Field, P. M. A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei. Brain Res. 50, 241 –264 (1973).

    CAS  PubMed  Google Scholar 

  96. Rossi, F., Wiklund, L., van der Want, J. J. & Strata, P. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. I. Development of new collateral branches and terminal plexuses. J. Comp. Neurol. 308, 513–535 ( 1991).

    CAS  PubMed  Google Scholar 

  97. Vanek, P., Thallmair, M., Schwab, M. E. & Kapfhammer, J. P. Increased lesion-induced sprouting of corticospinal fibres in the myelin-free rat spinal cord. Eur. J. Neurosci. 10, 45 –56 (1998).

    CAS  PubMed  Google Scholar 

  98. Caroni, P. & Schwab, M. E. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Biol. 106, 1281–1288 (1988).

    CAS  PubMed  Google Scholar 

  99. Chen, M. S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000).

    CAS  PubMed  Google Scholar 

  100. GrandPre, T., Nakamura, F., Vartanian, T. & Strittmatter, S. M. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein . Nature 403, 439–444 (2000).

    CAS  PubMed  Google Scholar 

  101. McKerracher, L. et al. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805–811 (1994).

    CAS  PubMed  Google Scholar 

  102. Mukhopadhyay, G., Doherty, P., Walsh, F. S., Crocker, P. R. & Filbin, M. T. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757–767 (1994).

    CAS  PubMed  Google Scholar 

  103. Niederost, B. P., Zimmermann, D. R., Schwab, M. E. & Bandtlow, C. E. Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J. Neurosci. 19, 8979–8989 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Fagan, A. M. et al. Endogenous FGF-2 is important for cholinergic sprouting in the denervated hippocampus. J. Neurosci. 17, 2499–2511 (1997). Demonstrates the role of lesion-induced, secreted factors in the induction of fibre sprouting into a denervated central nervous system region.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Tetzlaff, W. et al. Response of rubrospinal and corticospinal neurons to injury and neurotrophins. Prog. Brain Res. 103, 271–286 (1994).

    CAS  PubMed  Google Scholar 

  106. Gallo, G. & Letourneau, P. C. Localized sources of neurotrophins initiate axon collateral sprouting. J. Neurosci. 18 , 5403–5414 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Schnell, L., Schneider, R., Kolbeck, R., Barde, Y. A. & Schwab, M. E. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion . Nature 367, 170–173 (1994).

    CAS  PubMed  Google Scholar 

  108. Grill, R., Murai, K., Blesch, A., Gage, F. H. & Tuszynski, M. H. Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J. Neurosci. 17, 5560–5572 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Scarisbrick, I. A., Isackson, P. J. & Windebank, A. J. Differential expression of brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 in the adult rat spinal cord: regulation by the glutamate receptor agonist kainic acid. J. Neurosci. 19, 7757–7769 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. McAdoo, D. J., Xu, G. Y., Robak, G. & Hughes, M. G. Changes in amino acid concentrations over time and space around an impact injury and their diffusion through the rat spinal cord. Exp. Neurol. 159, 538–544 (1999).

    CAS  PubMed  Google Scholar 

  111. Johnson, R. A., Okragly, A. J., Haak-Frendscho, M. & Mitchell, G. S. Cervical dorsal rhizotomy increases brain-derived neurotrophic factor and neurotrophin–3 expression in the ventral spinal cord. J. Neurosci. 20, RC77 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hayashi, M., Ueyama, T., Nemoto, K., Tamaki, T. & Senba, E. Sequential mRNA expression for immediate early genes, cytokines, and neurotrophins in spinal cord injury. J. Neurotrauma 17, 203–218 ( 2000).

    CAS  PubMed  Google Scholar 

  113. Follesa, P., Wrathall, J. R. & Mocchetti, I. Increased basic fibroblast growth factor mRNA following contusive spinal cord injury. Brain Res. Mol. Brain Res. 22, 1–8 (1994).

    CAS  PubMed  Google Scholar 

  114. Zafra, F., Lindholm, D., Castren, E., Hartikka, J. & Thoenen, H. Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J. Neurosci. 12, 4793– 4799 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zafra, F., Hengerer, B., Leibrock, J., Thoenen, H. & Lindholm, D. Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 9, 3545– 3550 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Shen, S., Wiemelt, A. P., McMorris, F. A. & Barres, B. A. Retinal ganglion cells lose trophic responsiveness after axotomy. Neuron 23, 285–295 ( 1999).

    CAS  PubMed  Google Scholar 

  117. Meyer-Franke, A. et al. Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21, 681–963 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Frisen, J. et al. Increased levels of trkB mRNA and trkB protein-like immunoreactivity in the injured rat and cat spinal cord. Proc. Natl Acad. Sci. USA 89, 11282–11286 ( 1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wizenmann, A., Thies, E., Klostermann, S., Bonhoeffer, F. & Bahr, M. Appearance of target-specific guidance information for regenerating axons after CNS lesions. Neuron 11, 975–983 (1993). Demonstrates the re-expression/unmasking of guidance molecules in denervated central nervous system regions after lesion.

    CAS  PubMed  Google Scholar 

  120. Savaskan, N. E. et al. Outgrowth-promoting molecules in the adult hippocampus after perforant path lesion. Eur. J. Neurosci. 12, 1024–1032 (2000).

    CAS  PubMed  Google Scholar 

  121. Miranda, J. D. et al. Induction of Eph B3 after spinal cord injury. Exp. Neurol. 156, 218–222 (1999).

    CAS  PubMed  Google Scholar 

  122. Pasterkamp, R. J. et al. Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Mol. Cell Neurosci. 13, 143–166 (1999).

    CAS  PubMed  Google Scholar 

  123. Brustein, E. & Rossignol, S. Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. I. Deficits and adaptive mechanisms . J. Neurophysiol. 80, 1245– 1267 (1998).

    CAS  PubMed  Google Scholar 

  124. Jiang, W. & Drew, T. Effects of bilateral lesions of the dorsolateral funiculi and dorsal columns at the level of the low thoracic spinal cord on the control of locomotion in the adult cat. I. Treadmill walking. J. Neurophysiol. 76, 849– 866 (1996).

    CAS  PubMed  Google Scholar 

  125. Drew, T., Jiang, W., Kably, B. & Lavoie, S. Role of the motor cortex in the control of visually triggered gait modifications. Can. J. Physiol. Pharmacol. 74, 426– 442 (1996).

    CAS  PubMed  Google Scholar 

  126. Bernstein, J. J. & Bernstein, M. E. Axonal regeneration and formation of synapses proximal to the site of lesion following hemisection of the rat spinal cord. Exp. Neurol. 30, 336–351 (1971).

    CAS  PubMed  Google Scholar 

  127. Basso, D. M. Neuroanatomical substrates of functional recovery after experimental spinal cord injury: implications of basic science research for human spinal cord injury. Phys. Ther. 80, 808– 817 (2000).

    CAS  PubMed  Google Scholar 

  128. Kennard, M. A. Age and other factors in motor recovery for precentral lesions in monkeys . Am. J. Physiol. 115, 138– 146 (1936).

    Google Scholar 

  129. Bregman, B. S. & Goldberger, M. E. Infant lesion effect: II. Sparing and recovery of function after spinal cord damage in newborn and adult cats. Brain Res. 285, 119– 135 (1983).

    CAS  PubMed  Google Scholar 

  130. Commissiong, J. W. & Sauve, Y. Neurophysiological basis of functional recovery in the neonatal spinalized rat. Exp. Brain Res. 96, 473–479 ( 1993).

    CAS  PubMed  Google Scholar 

  131. Gibson, C. L., Arnott, G. A. & Clowry, G. J. Plasticity in the rat spinal cord seen in response to lesions to the motor cortex during development but not to lesions in maturity . Exp. Neurol. 166, 422– 434 (2000).

    CAS  PubMed  Google Scholar 

  132. Keifer, J. & Kalil, K. Effects of infant versus adult pyramidal tract lesions on locomotor behavior in hamsters. Exp. Neurol. 111, 98–105 (1991).

    CAS  PubMed  Google Scholar 

  133. Berger, W. Characteristics of locomotor control in children with cerebral palsy. Neurosci. Biobehav Rev. 22, 579–582 (1998).

    CAS  PubMed  Google Scholar 

  134. Rouiller, E. M. et al. Dexterity in adult monkeys following early lesion of the motor cortical hand area: the role of cortex adjacent to the lesion. Eur. J. Neurosci. 10, 729–740 (1998).

    CAS  PubMed  Google Scholar 

  135. Liu, Y. & Rouiller, E. M. Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys. Exp. Brain Res. 128, 149–159 (1999).

    CAS  PubMed  Google Scholar 

  136. Cohen, L. G. et al. Magnetic stimulation of the human cerebral cortex, an indicator of reorganization in motor pathways in certain pathological conditions. J. Clin. Neurophysiol. 8, 56–65 (1991).

    CAS  PubMed  Google Scholar 

  137. Cao, Y., Vikingstad, E. M., Huttenlocher, P. R., Towle, V. L. & Levin, D. N. Functional magnetic resonance studies of the reorganization of the human hand sensorimotor area after unilateral brain injury in the perinatal period. Proc. Natl Acad. Sci. USA 91, 9612–9616 ( 1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bregman, B. S., Kunkel-Bagden, E., McAtee, M. & O' Neill, A. Extension of the critical period for developmental plasticity of the corticospinal pathway. J. Comp. Neurol. 282, 355– 370 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Karim Fouad and Florence Bareyre for critical reading of the manuscript. The Swiss National Science Foundation, the International Research Institute of Paraplegia (Zurich) and the Spinal Cord Consortium of the Christopher Reeve Paralysis Fundation (Springfield, New Jersey) supported this work.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Nogo-A

glutamate decarboxylase

GAP-43

MAG

brevican

versican

NT-4/5

BDNF

NT-3

TRkB

TrkC

semaphorin 3A

EphB3

ENCYCLOPEDIA OF LIFE SCIENCES

Traumatic central nervous system injury

Motor neurons and spinal control of movement

Motor output from the brain and spinal cord

Nerve regeneration: mammalian

Glossary

SPASTICITY

Persistent contraction of certain muscles, which causes stiffness and interferes with gait, movement or speech.

VASOGENIC OEDEMA

Accumulation of extracellular fluid that results from changes in capillary permeability, allowing for the seepage of plasma molecules and water.

TRANSCRANIAL MAGNETIC STIMULATION

A technique use to induce a transient interrruption of normal brain activity in a restricted area of the brain. It is based on the generation of a strong magnetic field near the area of interest which, if changed rapidly enough, will induce an electric field sufficient to stimulate neurons.

LONG-TERM POTENTIATION AND DEPRESSION

Long-lasting activity-dependent changes in the efficacy of synaptic transmission.

RED NUCLEUS

Midbrain structure that receives motor information from the deep cerebellar nuclei and projects to higher motor centres, as well as to the spinal cord (rubrospinal tract).

CENTRAL PATTERN GENERATOR

Neural circuits that produce self-sustaining patterns of behaviour independently of their sensory input.

SUBSTANTIA GELATINOSA

Layer of the dorsal horn in the spinal cord in which sensory afferents form synapses with nociceptive neurons of the anterolateral system.

DNA MICROARRAY

Devices used to interrogate complex nucleic acid samples by hybridization. They make it possible to count the number of different RNA or cDNA molecules that are present in the sample of interest as a preparative stage for their subsequent characterization.

DORSAL RHIZOTOMY

Selective transection of the dorsal nerve root. It is performed to reduce nociceptive perception in the affected area while sparing motor function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raineteau, O., Schwab, M. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2, 263–273 (2001). https://doi.org/10.1038/35067570

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35067570

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing