Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Massive gene decay in the leprosy bacillus

Abstract

Leprosy, a chronic human neurological disease, results from infection with the obligate intracellular pathogen Mycobacterium leprae, a close relative of the tubercle bacillus. Mycobacterium leprae has the longest doubling time of all known bacteria and has thwarted every effort at culture in the laboratory. Comparing the 3.27-megabase (Mb) genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis (4.41 Mb) provides clear explanations for these properties and reveals an extreme case of reductive evolution. Less than half of the genome contains functional genes but pseudogenes, with intact counterparts in M. tuberculosis, abound. Genome downsizing and the current mosaic arrangement appear to have resulted from extensive recombination events between dispersed repetitive sequences. Gene deletion and decay have eliminated many important metabolic activities including siderophore production, part of the oxidative and most of the microaerophilic and anaerobic respiratory chains, and numerous catabolic systems and their regulatory circuits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circular genome map showing the position and orientation of known genes, pseudogenes and repetitive sequences.
Figure 2: Comparison of the proS loci of M. leprae and M. tuberculosis.
Figure 3: Distribution of genes by functional category.

Similar content being viewed by others

References

  1. Karonga Prevention Trial Group. Randomised controlled trial of single BCG, repeated BCG, or combined BCG and killed Mycobacterium leprae vaccine for prevention of leprosy and tuberculosis in Malawi. Lancet 348, 17–24 (1996).

    Article  CAS  Google Scholar 

  2. Nordeen, S. K. & Hombach, J. M. in Tropical Disease Research: Progress 1991-1992. Eleventh Programme Report of the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (eds Walgate, R. & Simpson, K.) 47–55 (World Health Organization, Geneva, 1993).

    Google Scholar 

  3. World Health Organization in WHO Weekly Epidemiological Record 73, 40 (1998).

    Google Scholar 

  4. Hansen, G. H. A. Undersogelser angaende spedalskhedens aasager. Norsk Magazin for Laegervidenskaben 4 (Suppl.), 1–88 (1874).

    Google Scholar 

  5. Kirchheimer, W. K. & Storrs, E. E. Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. Int. J. Lepr. 39, 693–702 (1971).

    CAS  Google Scholar 

  6. Franzblau, S. Drug susceptibility testing of Mycobacterium leprae in the BACTEC 460 system. Antimicrob. Agents Chemother. 33, 2115–2117 (1989).

    Article  CAS  Google Scholar 

  7. Shephard, C. C. in Leprosy (ed. Hastings, R. C.) 269–286 (Churchill Livingstone, Edinburgh, 1985).

    Google Scholar 

  8. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Tekaia, F. et al. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tubercle Lung Disease 79, 329–342 (1999).

    Article  CAS  Google Scholar 

  10. Brosch, R., Gordon, S. V., Eiglmeier, K., Garnier, T. & Cole, S. T. Comparative genomics of the leprosy and tubercle bacilli. Res. Microbiol. 151, 135–142 (2000).

    Article  CAS  Google Scholar 

  11. Philipp, W., Schwartz, D. C., Telenti, A. & Cole, S. T. Mycobacterial genome structure. Electrophoresis 19, 573–576 (1998).

    Article  CAS  Google Scholar 

  12. Stinear, T. P., Jenkin, G. A., Johnson, P. D. R. & Davies, J. K. Comparative genetic analysis of Mycobacterium ulcerans and Mycobacterium marinum reveals evidence of recent divergence. J. Bacteriol. 182, 6322–6330 (2000).

    Article  CAS  Google Scholar 

  13. Marques, M. A. M., Chitale, S., Brennan, P. J. & Pessolani, M. C. V. Mapping and identification of the major cell-wall associated components of Mycobacterium leprae. Infect. Immun. 66, 2625–2631 (1998).

    CAS  PubMed  Google Scholar 

  14. Jungblut, P. R. et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol. Microbiol. 33, 1103–1117 (1999).

    Article  CAS  Google Scholar 

  15. Andersson, J. O. & Andersson, S. G. E. Insights into the evolutionary process of genome degradation. Curr. Opin. Genet. Dev. 9, 664–671 (1999).

    Article  CAS  Google Scholar 

  16. Anderssen, S. G. E. et al. The complete genome sequence of the obligate intracellular parasite Rickettsia prowazekii. Nature 396, 133–140 (1998).

    Article  ADS  Google Scholar 

  17. Mizrahi, V., Dawes, S. S. & Rubin, H. in Molecular Genetics of Mycobacteria (eds Hatfull, G. F. & Jacobs, W. R. Jr) 159–172 (ASM, Washington DC, 2000).

    Google Scholar 

  18. Gordon, S. V., Heym, B., Parkhill, J., Barrell, B. & Cole, S. T. New insertion sequences and a novel repeated sequence in the genome of Mycobacterium tuberculosis H37Rv. Microbiology 145, 881–892 (1999).

    Article  CAS  Google Scholar 

  19. Wolf, Y. I., Aravind, L., Grishin, N. V. & Koonin, E. V. Evolution of amino-acyl-tRNA synthetases—analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res. 9, 689–710 (1999).

    CAS  Google Scholar 

  20. Poulet, S. & Cole, S. T. Repeated DNA sequences in mycobacteria. Arch. Microbiol. 163, 79–86 (1995).

    Article  CAS  Google Scholar 

  21. Cole, S. T. Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett. 452, 7–10 (1999).

    Article  CAS  Google Scholar 

  22. Ramakrishnan, L., Federspiel, N. A. & Falkow, S. Granuloma-specific expression of mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288, 1436–1439 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Daffe, M. & Draper, P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39, 131–203 (1998).

    Article  CAS  Google Scholar 

  24. Yuan, Y. & Barry, C. E. III A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 93, 12828–12833 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Draper, P., Dobson, G., Minnikin, D. E. & Minnikin, S. M. The mycolic acids of Mycobacterium leprae harvested from experimentally infected nine-banded armadillos. Ann. Microbiol. (Paris) 133, 39–47 (1982).

    CAS  Google Scholar 

  26. Glickman, M. S., Cox, J. S. & Jacobs, W. R. Jr A novel mycolic acid cyclopropane synthetase is required for coding, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5, 717–727 (2000).

    Article  CAS  Google Scholar 

  27. Melancon-Kaplan, J. et al. Immunological significance of the cell wall of Mycobacterium leprae. Proc. Natl Acad. Sci. USA 85, 1917–1921 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Jr Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Camacho, L. R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257–267 (1999).

    Article  CAS  Google Scholar 

  30. Peterson, J. A. & Graham, S. E. A close family resemblance: the importance of structure in understanding cytochromes P450. Structure 6, 1079–1085 (1998).

    Article  CAS  Google Scholar 

  31. Wheeler, P. R. & Ratledge, C. in Tuberculosis: Pathogenesis, Protection, and Control (ed. Bloom, B. R.) 353–385 (Am. Soc. Microbiol., Washington DC, 1994).

    Book  Google Scholar 

  32. Honer Zu Bentrup, K., Miczak, A., Swenson, D. L. & Russell, D. G. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J. Bacteriol. 181, 7161–7167 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. McKinney, J. D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).

    Article  ADS  CAS  Google Scholar 

  34. Wheeler, P. R. Oxidation of carbon sources through the tricarboxylic acid cycle in Mycobacterium leprae grown in armadillo liver. J. Gen. Microbiol. 130, 381–389 (1984).

    CAS  PubMed  Google Scholar 

  35. Ratledge, C. R. in The Biology of the Mycobacteria (eds Ratledge, C. & Stanford, J.) 53–94 (Academic, San Diego, 1982).

    Google Scholar 

  36. De Voss, J. J. et al. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl Acad. Sci. USA 97, 1252–1257 (2000).

    Article  ADS  CAS  Google Scholar 

  37. Quadri, L. E., Sello, J., Keating, T. A., Weinreb, P. H. & Walsh, C. T. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol. 5, 631–645 (1998).

    Article  CAS  Google Scholar 

  38. Hall, R. M. & Wheeler, P. R. Exochelin-mediated iron uptake into Mycobacterium leprae. Int. J. Lepr. Other Mycobact. Dis. 51, 490–494 (1983).

    CAS  PubMed  Google Scholar 

  39. Makui, H. et al. Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol. Microbiol. 35, 1065–1078 (2000).

    Article  CAS  Google Scholar 

  40. Shimoji, Y., Ng, V., Matsumura, K., Fischetti, V. A. & Rambukkana, A. A 21-kDa surface protein of Mycobacterium leprae binds peripheral nerve laminin-2 and mediates Schwann cell invasion. Proc. Natl Acad. Sci. USA 96, 9857–9862 (1999).

    Article  ADS  CAS  Google Scholar 

  41. Rambukkana, A. Role of alpha-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science 282, 2076–2079 (1998).

    Article  ADS  CAS  Google Scholar 

  42. Rambukkana, A., Salzer, J. L., Yurchenco, P. D. & Tuomanen, E. I. Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin-α2 chain. Cell 88, 811–821 (1997).

    Article  CAS  Google Scholar 

  43. Arruda, S., Bomfim, G., Knights, R., Huima-Byron, T. & Riley, L. W. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261, 1454–1457 (1993).

    Article  ADS  CAS  Google Scholar 

  44. Eiglmeier, K., Fsihi, H., Heym, B. & Cole, S. T. On the catalase-peroxidase gene, katG, of Mycobacterium leprae and the implications for treatment of leprosy with isoniazid. FEMS Microbiol. Lett. 149, 273–278 (1997).

    Article  CAS  Google Scholar 

  45. Eiglmeier, K., Honoré, N., Woods, S. A., Caudron, B. & Cole, S. T. Use of an ordered cosmid library to deduce the genomic organisation of Mycobacterium leprae. Mol. Microbiol. 7, 197–206 (1993).

    Article  CAS  Google Scholar 

  46. Smith, D. R. et al. Multiplex sequencing of 1.5 Mb of the Mycobacterium leprae genome. Genome Res. 7, 802–819 (1997).

    Article  CAS  Google Scholar 

  47. Bonfield, J. K., Smith, K. F. & Staden, R. A new DNA sequence assembly program. Nucleic Acids Res. 24, 4992–4999 (1995).

    Article  Google Scholar 

  48. Altschul, S. F., Boguski, M. S., Gish, W. & Wooton, J. C. Issues in searching molecular sequence databases. Nature Genet. 6, 119–129 (1994).

    Article  CAS  Google Scholar 

  49. Parkhill, J. et al. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–505 (2000).

    Article  ADS  CAS  Google Scholar 

  50. Rutherford, K. Artemis: sequence visulaization and annotation. Bioinformatics 16, 944–945 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B. R. Bloom, P. J. Brennan, M. J. Colston, J. Grosset and B. Ji for advice, reagents and encouragement. This work was supported by the New York Community Trust, ILEP, the Association Française Raoul Follereau, the Wellcome Trust and the Institut Pasteur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Cole.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, S., Eiglmeier, K., Parkhill, J. et al. Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011 (2001). https://doi.org/10.1038/35059006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35059006

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing