Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis

Abstract

Meristem function in plants requires both the maintenance of stem cells and the specification of founder cells from which lateral organs arise. Lateral organs are patterned along proximodistal, dorsoventral and mediolateral axes1,2. Here we show that the Arabidopsis mutant asymmetric leaves1 (as1) disrupts this process. AS1 encodes a myb domain protein, closely related to PHANTASTICA in Antirrhinum and ROUGH SHEATH2 in maize, both of which negatively regulate knotted-class homeobox genes. AS1 negatively regulates the homeobox genes KNAT1 and KNAT2 and is, in turn, negatively regulated by the meristematic homeobox gene SHOOT MERISTEMLESS. This genetic pathway defines a mechanism for differentiating between stem cells and organ founder cells within the shoot apical meristem and demonstrates that genes expressed in organ primordia interact with meristematic genes to regulate shoot morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of as1 mutant and wild-type Arabidopsis.
Figure 2: Polymerase chain reaction after reverse transcription of RNA (RT–PCR) analysis of KNOX gene expression in as1 and wild type.
Figure 3: Expression of AS1 and KNAT1.
Figure 4: as1 shows genetic interaction with stm-1.

Similar content being viewed by others

References

  1. Martienssen, R. & Dolan, L. in Arabidopsis. Annual Plant Reviews (eds Anderson, M. & Roberts, J.) 262– 297 (Sheffield Academic Press, Sheffield, 1998).

    Google Scholar 

  2. Hudson, A. Development of symmetry in plants. Annu. Rev. Plant. Physiol. Mol. Biol. 51, 349–370 ( 2000).

    Article  CAS  Google Scholar 

  3. Jackson, D., Veit, B. & Hake, S. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120, 405–413 (1994).

    CAS  Google Scholar 

  4. Barton, M. K. & Poethig, R. S. Formation of the shoot apical meristem in Arabidopsis thaliana—an analysis of development in the wild type and in the shoot meristemless mutant. Development 119, 823–831 ( 1993).

    Google Scholar 

  5. Clark, S. E., Jacobsen, S. E., Levin, J. Z. & Meyerowitz, E. M. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122, 1567–1575 (1996).

    CAS  PubMed  Google Scholar 

  6. Vollbrecht, E., Reiser, L. & Hake, S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127, 3161–3172 ( 2000).

    CAS  PubMed  Google Scholar 

  7. Reiser, L., Sanchez-Baracaldo, P. & Hake, S. Knots in the family tree: evolutionary relationships and functions of knox homeobox genes. Plant Mol. Biol. 42, 151–166 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Sinha, N. R., Williams, R. E. & Hake, S. Overexpression of the maize homeo box gene, KNOTTED-1 , causes a switch from determinate to indeterminate cell fates. Genes Dev. 7, 787–795 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  9. Chuck, G., Lincoln, C. & Hake, S. Knat1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8, 1277–1289 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Waites, R., Selvadurai, H. R., Oliver, I. R. & Hudson, A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93, 779–789 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  11. Timmermans, M. C., Hudson, A., Becraft, P. W. & Nelson, T. ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284, 151–153 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Waites, R. & Hudson, A. phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121, 2143–2154 ( 1995).

    CAS  Google Scholar 

  13. Tsiantis, M., Schneeberger, R., Golz, J. F., Freeling, M. & Langdale, J. A. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284, 154–156 ( 1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Schneeberger, R., Tsiantis, M., Freeling, M. & Langdale, J. A. The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development 125, 2857–2865 (1998).

    CAS  PubMed  Google Scholar 

  15. Reidei, G. P. Non-mendelian megagametogenesis in Arabidopsis. Genetics 51, 857–872 ( 1965).

    Google Scholar 

  16. Reinholz, E. Arabidopsis thaliana (L.) HEYNH. als Objekt fur genetische und entwicklungsphysiologische Untersuchungen. Arabidopsis Inform. Service 01S, 24 (1965).

    Google Scholar 

  17. Long, J. A., Moan, E. I., Medford, J. I. & Barton, M. K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66–69 (1996).

    ADS  CAS  PubMed  Google Scholar 

  18. Lincoln, C., Long, J., Yamaguchi, J., Serikawa, K. & Hake, S. A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6, 1859–1876 ( 1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dockx, J. et al. The homeobox gene ATK1 of Arabidopsis thaliana is expressed in the shoot apex of the seedling and in flowers and inflorescence stems of mature plants. Plant Mol. Biol. 28, 723–737 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Lin, X. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 761– 768 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Long, J. & Barton, M. K. Initiation of axillary and floral meristems in Arabidopsis. Dev. Biol. 218, 341–353 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Endrizzi, K., Moussian, B., Haecker, A., Levin, J. Z. & Laux, T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J. 10, 101–113 (1996).

    Article  Google Scholar 

  23. Clark, S. E., Running, M. P. & Meyerowitz, E. M. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1 . Development 121, 2057– 2067 (1995).

    CAS  Google Scholar 

  24. Mayer, K. F. et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805–815 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Aida, M., Ishida, T. & Tasaka, M. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126, 1563–1570 (1999).

    CAS  PubMed  Google Scholar 

  26. Sundaresan, V. et al. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Gene Dev. 9, 1797–1810 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Li, J., Nagpal, P., Vitart, V., McMorris, T. C. & Chory, J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272, 398– 401 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Springer, P. S., McCombie, W. R., Sundaresan, V. & Martienssen, R. A. Gene trap tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Science 268, 877– 880 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Hajdukiewicz, P., Svab, Z. & Maliga, P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989–994 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y. G., Mitsukawa, N., Oosumi, T. & Whittier, R. F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–463 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Groover, C. Kidner, E. Vollbrecht, M. Timmermans, J. Golz and D. Jackson for helpful discussions, Q. Gu, P. Springer, J. Li and J. Chory for help with mapping and T. Laux for wus-1 seed. We also thank T. Mulligan for plant care, and K. Schutz and D. McCombie for help with sequencing. This work was supported by a Human Frontiers Science Program postdoctoral fellowship to M.C., a Biotechnology and Biological Sciences Research Council studentship to R.B. and grant support from the National Science Foundation, Department of Energy and United States Department of Agriculture to R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Martienssen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, M., Barley, R., Curtis, M. et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408, 967–971 (2000). https://doi.org/10.1038/35050091

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050091

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing