Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Apoptosis in development

Abstract

Essential to the construction, maintenance and repair of tissues is the ability to induce suicide of supernumerary, misplaced or damaged cells with high specificity and efficiency. Study of three principal organisms — the nematode, fruitfly and mouse — indicate that cell suicide is implemented through the activation of an evolutionarily conserved molecular programme intrinsic to all metazoan cells. Dysfunctions in the regulation or execution of cell suicide are implicated in a wide range of developmental abnormalities and diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The apoptotic system in C. elegans.
Figure 2: The apoptotic system in D. melanogaster.
Figure 3: The apoptotic system in mammals.

References

  1. Jacobson, M. D., Weil, M. & Raff, M. C. Programmed cell death in animal development. Cell 88, 347–354 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  2. Saxén, L. Organogenesis of the Kidney (Cambridge Univ. Press, Cambridge, 1987).

    Book  Google Scholar 

  3. Namba, R., Pazdera, T. M., Cerrone, R. L. & Minden, J. S. Drosophila embryonic pattern repair: how embryos respond to bicoid dosage alteration. Development 124, 1393– 1403 (1997).

    CAS  PubMed  Google Scholar 

  4. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312– 1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Hengartner, M. Apoptosis. Death by crowd control. Science 281, 1298–1299 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Shaham, S. Identification of multiple Caenorhabditis elegans caspases and their potential roles in proteolytic cascades. J. Biol. Chem. 273, 35109–35117 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Conradt, B. & Horvitz, H. R. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 98 , 317–327 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Inukai, T. et al. SLUG, a CES-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein . Mol. Cell 4, 343–352 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Metzstein, M. M. & Horvitz, H. R. The C. elegans cell death specification gene ces-1 encodes a SNAIL family zinc finger protein. Mol. Cell 4, 309– 319 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Inaba, T. et al. Reversal of apoptosis by the leukaemia-associated E2A-HLF chimaeric transcription factor. Nature 382, 541– 544 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Metzstein, M. M., Hengartner, M. O., Tsung, N., Ellis, R. E. & Horvitz, H. R. Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2 . Nature 382, 545–547 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Gartner, A., Milstein, S., Ahmed, S., Hodgkin, J. & Hengartner, M. O. A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans. Mol. Cell 5, 435–443 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  13. Gumienny, T. L., Lambie, E., Hartwieg, E., Horvitz, H. R. & Hengartner, M. O. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011–1022 ( 1999).

    CAS  PubMed  Google Scholar 

  14. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  15. Kanuka, H. et al. Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol. Cell 4, 757–769 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, L., Song, Z., Tittel, J. & Steller, H. HAC-1, a Drosophila homolog of APAF-1 and CED-4 functions in developmental and radiation-induced apoptosis. Mol. Cell 4, 745– 755 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez, A. et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nature Cell Biol. 1, 272–279 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  18. Antonsson, B. & Martinou, J. C. The Bcl-2 protein family. Exp. Cell Res. 256, 50–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Brachmann, C. B., Jassim, O. W., Wachsmuth, B. D. & Cagan, R. L. The Drosophila Bcl-2 family member dBorg-1 functions in the apoptotic response to UV-irradiation. Curr. Biol. 10, 547–550 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Igaki, T. et al. Drob-1, a Drosophila member of the Bcl-2/CED-9 family that promotes cell death. Proc. Natl Acad. Sci. USA 97, 662–667 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Colussi, P. A. et al. Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery. J. Cell Biol. 148, 703–714 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, H. et al. Drosophila Pro-apoptotic Bcl-2/Bax homologue reveals evolutionary conservation of cell death mechanisms. J. Biol. Chem. 275, 27303–27306 (2000).

    CAS  PubMed  Google Scholar 

  23. Kelekar, A. & Thompson, C. B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 8 , 324–330 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Vaux, D. L., Weissman, I. L. & Kim, S. K. Prevention of programmed cell-death in Caenorhabditis elegans by human bcl-2. Science 258, 1955–1957 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. White, K. et al. Genetic control of programmed cell death in Drosophila. Science 264, 677–683 ( 1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Ollmann, M. et al. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101, 91 –101 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Jin, S. et al. Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 7301–7306 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brodsky, M. H. et al. Drosophila p53 binds a damage response element at the reaper locus. Cell 101, 103– 113 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling . Cell 95, 331–341 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Kurada, P. & White, K. Ras promotes cell survival in Drosophila by down-regulating hid expression. Cell 95, 319–329 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Foley, K. & Cooley, L. Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development 125, 1075–1082 (1998).

    CAS  PubMed  Google Scholar 

  32. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Chai, J., Du, C., Wu, J.-W., Wang, X. & Shi, Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862 ( 2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 19, 589–597 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meier, P., Silke, J., Leevers, S. J. & Evan, G. I. The Drosophila caspase DRONC is regulated by DIAP1. EMBO J. 19, 598–611 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Song, Z. et al. Biochemical and genetic interactions between Drosophila caspases and the proapoptotic genes rpr, hid, and grim. Mol. Cell Biol. 20, 2907–2914 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A. & Hay, B. A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, P. & Abrams, J. M. Drosophila apoptosis and Bcl-2 genes: outliers fly in. J. Cell Biol. 148, 625–627 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bergmann, A., Agapite, J. & Steller, H. Mechanisms and control of programmed cell death in invertebrates . Oncogene 17, 3215–3223 (1998).

    Article  PubMed  Google Scholar 

  41. McCall, K. & Steller, H. Requirement for DCP-1 caspase during Drosophila oogenesis. Science 279, 230 –234 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Jiang, C., Baehrecke, E. H. & Thummel, C. S. Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124, 4673–4683 (1997).

    CAS  PubMed  Google Scholar 

  43. Tata, J. R. Requirement for RNA and protein synthesis for induced regression of the tadpole tail in organ culture. Dev. Biol. 13, 77 –94 (1966).

    Article  CAS  PubMed  Google Scholar 

  44. Kiess, W. & Gallaher, B. Hormonal control of programmed cell death/apoptosis. Eur. J. Endocrinol. 138, 482–491 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Merino, R., Ganan, Y., Macias, D., Rodriguez-Leon, J. & Hurle, J. M. Bone morphogenetic proteins regulate interdigital cell death in the avian embryo. Ann. NY Acad. Sci. 887, 120–132 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Hu, S. & Yang, X. dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J. Biol. Chem. (in the press).

  47. Kondo, T., Yokokura, T. & Nagata, S. Activation of distinct caspase-like proteases by Fas and reaper in Drosophila cells. Proc. Natl Acad. Sci. USA 94, 11951–11956 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1.Cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9 . J. Biol. Chem. 274, 11549– 11556 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Varkey, J., Chen, P., Jemmerson, R. & Abrams, J. M. Altered cytochrome c display precedes apoptotic cell death in Drosophila. J. Cell. Biol. 144, 701–710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barres, B. A. & Raff, M. C. Axonal control of oligodendrocyte development. J. Cell Biol. 147, 1123– 1128 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Raff, M. C. Social controls on cell survival and cell death. Nature 356, 397–400 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Raff, M. C. et al. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695 –700 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Weil, M., Jacobson, M. D. & Raff, M. C. Is programmed cell death required for neural tube closure? Curr Biol 7, 281– 284 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325– 337 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739– 750 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Middleton, G., Cox, S. W., Korsmeyer, S. & Davies, A. M. Differences in Bcl-2- and Bax-independent function in regulating apoptosis in sensory neuron populations. Eur. J. Neurosci. 12 , 819–827 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506 –1510 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Raoul, C., Henderson, C. E. & Pettmann, B. Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell Biol. 147, 1049–1062 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zheng, T. S., Hunot, S., Kuida, K. & Flavell, R. A. Caspase knockouts: matters of life and death. Cell Death Differ. 6, 1043–1053 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, J. & Lenardo, M. J. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies . J. Cell Sci. 113, 753– 757 (2000).

    CAS  PubMed  Google Scholar 

  64. Yeh, W. C., Hakem, R., Woo, M. & Mak, T. W. Gene targeting in the analysis of mammalian apoptosis and TNF receptor superfamily signaling . Immunol. Rev. 169, 283– 302 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Honarpour, N. et al. Adult Apaf-1-deficient mice exhibit male infertility. Dev. Biol. 218, 248–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  67. Xiang, J., Chao, D. & Korsmeyer, S. Bax-induced cell death may not require interleukin-1β-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA 93 , 14559–14563 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. McCarthy, N., Whyte, M., Gilbert, C. & Evan, G. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J. Cell Biol. 136, 215–227 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chautan, M., Chazal, G., Cecconi, F., Gruss, P. & Golstein, P. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr. Biol. 9, 967–970 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Pena, J. C., Fuchs, E. & Thompson, C. B. Bcl-x expression influences keratinocyte cell survival but not terminal differentiation. Cell Growth Differ. 8, 619–629 (1997).

    CAS  PubMed  Google Scholar 

  71. Merritt, A. J. et al. Differential expression of bcl-2 in intestinal epithelia. Correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J. Cell Sci. 108, 2261–2271 (1995).

    CAS  PubMed  Google Scholar 

  72. Evan, G. & Littlewood, T. A matter of life and cell death . Science 281, 1317–1322 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Juin, P., Hueber, A. O., Littlewood, T. & Evan, G. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev. 13, 1367– 1381 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Roulston, A., Marcellus, R. C. & Branton, P. E. Viruses and apoptosis. Annu. Rev. Microbiol. 53, 577–628 ( 1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, P., Finch, A. & Evan, G. Apoptosis in development. Nature 407, 796–801 (2000). https://doi.org/10.1038/35037734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35037734

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing