Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the dimerized hormone-binding domain of a guanylyl- cyclase-coupled receptor

Abstract

The atrial natriuretic peptide (ANP) hormone is secreted by the heart in response to an increase in blood pressure. ANP exhibits several potent anti-hypertensive actions in the kidney, adrenal gland and vascular system. These actions are induced by hormone binding extracellularly to the ANP receptor1, thereby activating its intracellular guanylyl cyclase domain for the production of cyclic GMP2. Here we present the crystal structure of the glycosylated dimerized hormone-binding domain of the ANP receptor at 2.0-Å resolution. The monomer comprises two interconnected subdomains, each encompassing a central β-sheet flanked by α-helices, and exhibits the type I periplasmic binding protein fold. Dimerization is mediated by the juxtaposition of four parallel helices, arranged two by two, which brings the two protruding carboxy termini into close relative proximity. From affinity labelling and mutagenesis studies, the ANP-binding site maps to the side of the dimer crevice and extends to near the dimer interface. A conserved chloride-binding site is located in the membrane distal domain, and we found that hormone binding is chloride dependent. These studies suggest mechanisms for hormone activation and the allostery of the ANP receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the ANP receptor hormone-binding domain dimer.
Figure 2: The chloride-binding site in the ligand-binding domain of the ANP receptor.

Similar content being viewed by others

References

  1. Chinkers, M. et al. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338, 78– 83 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Foster, D. C., Wedel, B. J., Robinson, S. W. & Garbers, D. L. Mechanisms of regulation and functions of guanylyl cyclases. Rev. Physiol. Biochem. Pharmacol. 135, 1– 39 (1999).

    Article  CAS  Google Scholar 

  3. Wedel, B. J. & Garbers, D. L. New insights on the functions of the guanylyl cyclase receptors. FEBS Lett. 410, 29–33 (1997).

    Article  CAS  Google Scholar 

  4. Misono, K. S., Sivasubramanian, N., Berkner, K. & Zhang, X. Expression and purification of the extracellular ligand-binding domain of the atrial natriuretic peptide (ANP) receptor: monovalent binding with ANP induces 2:2 complexes. Biochemistry 38, 516–523 (1999).

    Article  CAS  Google Scholar 

  5. Miyagi, M. & Misono, K. S. Identification and characterization of glycosylation sites in the extracellular domain of the atrial natriuretic peptide receptor: Oligosaccharide structures are not required for hormone binding. Eur. J. Biochem. (submitted).

  6. O'Hara, B. P. et al. Crystal structure and induction mechanism of AmiC-AmiR: a ligand-regulated transcription antitermination complex. EMBO J. 18, 5175–5186 ( 1999).

    Article  CAS  Google Scholar 

  7. Saper, M. A. & Quiocho, F. A. Leucine, isoleucine, valine-binding protein from Escherichia coli. Structure at 3.0-Å resolution and location of the binding site. J. Biol. Chem. 258, 11057–11062 (1983).

    CAS  PubMed  Google Scholar 

  8. Wilson, E. M. & Chinkers, M. Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34, 4696–4701 (1995).

    Article  CAS  Google Scholar 

  9. Lowe, D. G. Human natriuretic peptide receptor-A guanylyl cyclase is self-associated prior to hormone binding. Biochemistry 31, 10421 –10425 (1992).

    Article  CAS  Google Scholar 

  10. Conte, L. L., Chothia, C. & Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177– 2198 (1999).

    Article  Google Scholar 

  11. Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  Google Scholar 

  12. Syed, R. S. et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395, 511–516 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Labrecque, J., McNicoll, N., Marquis, M., & De Léan, A. A disulphide-bridged mutant of natriuretic peptide receptor-A displays constitutive activity. J. Biol. Chem. 274, 9752– 9759 (1999).

    Article  CAS  Google Scholar 

  14. Huo, X., Abe, T. & Misono, K. S. Ligand binding-dependent limited proteolysis of the atrial natriuretic peptide receptor: juxtamembrane hinge structure essential for transmembrane signal transduction. Biochemistry 38, 16941–16951 (1999).

    Article  CAS  Google Scholar 

  15. McNicoll, N., Gagnon, J., Rondeau, J. -J., Ong, H. & De Léan, A. Localization by photoaffinity labeling of natriuretic peptide receptor-A binding domain. Biochemistry 35, 12950–12956 ( 1996).

    Article  CAS  Google Scholar 

  16. Engel, A. M. & Lowe, D. G. Characterization of the hormone binding site of natriuretic peptide receptor-C. FEBS Lett. 360, 169–172 (1995).

    Article  CAS  Google Scholar 

  17. Duda, T., Goraczniak, R. M. & Sharma, R. K. Site-directed mutational analysis of a membrane guanylate cyclase cDNA reveals the atrial natriuretic factor signaling site. Proc. Natl Acad. Sci. USA 88, 7882– 7886 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Itakura, M., Suzuki, H. & Hirose, S. Structural analysis of natriuretic peptide receptor-C by truncation and site-directed mutagenesis. Biochem. J. 322, 585–590 (1997).

    Article  CAS  Google Scholar 

  19. Wada, A. et al. Identification of ligand recognition sites in heat-stable enterotoxin receptor, membrane-associated guanylyl cyclase C by site-directed mutational analysis. Inf. Immun. 64, 5144– 5150 (1996).

    CAS  Google Scholar 

  20. Katafuchi, T. et al. Modulation by NaCl of atrial natriuretic peptide receptor levels and cyclic GMP responsiveness to atrial natriuretic peptide of cultured vascular endothelial cells. J. Biol. Chem. 267, 7624–7629 (1992).

    CAS  PubMed  Google Scholar 

  21. Veress, A. T., Honrath, U., Chong, C. K. & Sonnenberg, H. Renal resistance to ANF in salt-depleted rats is independent of sympathetic or ANG-aldosterone systems. Am. J. Physiol. 272, F545–F550 (1997).

    CAS  PubMed  Google Scholar 

  22. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  23. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  24. The CCP4 suite: Programs for computational crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  25. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  26. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  27. Kraulis, P. J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystal. 24, 946– 950 (1991).

    Article  Google Scholar 

  28. Merritt, E. M. & Bacon, D. J. Raster3D: Photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  29. Nicholls, A., Sharp, K. A., & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  30. He, X., Nishio, K., & Misono, K. S. High-yield affinity alkylation of the atrial natriuretic factor receptor binding site. Bioconjug. Chem. 6, 541–548 (1995).

    Article  CAS  Google Scholar 

  31. Misono, K. S. Atrial natriuretic factor binding to its receptor is dependent on chloride concentration: a possible feedback-control mechanism in renal salt regulation. Circ. Res. 86, 1135–1139 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (K.S.M.) and the American Heart Association (K.S.M. and V.C.Y.) and by a NIH postdoctoral fellowship (F.v.d.A.). We thank G. Stark for his support. Diffraction data were measured at the Advanced Light Source and on the Structural Biology Center beamline at the Advanced Photon Source, supported by the US Department of Energy, and at the National Synchrotron Light Source, Brookhaven National Laboratory, supported by the U.S. Department of Energy and the National Institutes of Health. We are grateful to E. Walker and the CCF LRI Computer Core for facilities support, to S. Ginell and T. Earnest for beamline support, to L. Pearl for coordinates of the AmiC/AmiR structure, and to M. Young for interesting discussions. Purification and crystallization of the ANP receptor hormone-binding domain, ANP-binding site determination, binding studies and other functional characterizations were carried out by X.Z., M.M., X.H. and K.S.M. Data collection, structure determination and refinement, and structure analysis were carried out by F.v.d.A. and V.C.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivien C. Yee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Akker, F., Zhang, X., Miyagi, M. et al. Structure of the dimerized hormone-binding domain of a guanylyl- cyclase-coupled receptor. Nature 406, 101–104 (2000). https://doi.org/10.1038/35017602

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35017602

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing