Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Scalar turbulence

Abstract

The advection of a passive substance by a turbulent flow is important in many natural and engineering settings. The concentration of such a substance can exhibit complex dynamic behaviour that shows many phenomenological parallels with the behaviour of the turbulent velocity field. Yet the statistical properties of this so-called ‘passive scalar’ turbulence are decoupled from those of the underlying velocity field. Passive scalar turbulence has recently yielded to mathematical analysis, and such progress may ultimately lead to a better understanding of the still intractable problem of fluid turbulence itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescent dye in a turbulent jet.
Figure 2: Probability distribution functions (PDF).
Figure 3: Scalar fluctuations in time and space.
Figure 4: Anomalous scaling exponent, 2ζ2 - ζ4, versus scaling index γ (see equation (2)).
Figure 5: Contribution of fronts and configuration dependence of the three-point correlator.

Similar content being viewed by others

References

  1. Pasquill, F. & Smith, F. B. Atmospheric Diffusion (Ellis Horwood, Chichester, 1983).

    Google Scholar 

  2. Dibble, R. W., Warnatz, J. & Maas, U. Combustion: Physical and Chemical Fundamentals, Modelling and Simulations, Experiments, Pollutant Formation (Springer, New York, 1996).

    MATH  Google Scholar 

  3. Proctor, M. R. E. & Gilbert, A. D. (eds) Lectures on Solar and Planetary Dynamos 117 (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  4. Berg, H C. Bacterial microprocessing. Cold Spring Harbor Symp. Quant. Biol. 55, 539–545 ( 1990).

    Article  CAS  Google Scholar 

  5. Atema, J. Chemical signals in the marine environment: dispersal, detection, and temporal signal analysis. Proc. Natl Acad. Sci. 92, 62–66 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Mafraneto, A. & Carde, R. T. Fine-scale structure of pheromone plumes modulates upwind orientation fo flying moths. Nature 369, 142–144 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Sreenivasan, K. R. On local isotropy of passive scalars in turbulent shear flows. Proc. R. Soc. Lond. A 434, 165–182 (1991).

    Article  ADS  Google Scholar 

  8. Warhaft, Z. Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203–240 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  9. Sreenivasan, K. & Antonia, R. A. The phenomenology of small scale turbulence. Annu. Rev. Fluid Mech. 29 , 435–472 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  10. Frisch, U. Turbulence: The legacy of AN Kolmogorov (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  11. Monin, A. S. & Yaglom, A. M. Statistical Fluid Mechanics (MIT Press, Cambridge, 1975).

    Google Scholar 

  12. Tennekes, H. & Lumley, J. A. First Course in Turbulence (MIT Press, Cambridge, 1972).

    MATH  Google Scholar 

  13. Edouard, S. et al. The effect of small-scale inhomogeneities on ozone depletion in the Arctic. Nature 384, 444– 447 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Kraichnan, R. H. Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945 (1968); Convection of a passive scalar by a quasi-uniform random straining field. J. Fluid Mech. 64, 737– 762 (1974).

    Article  ADS  Google Scholar 

  15. Kraichnan, R. H. Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett. 72, 1016–1019 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Holzer, M. & Siggia, E. D. Turbulent mixing of a passive scalar. Phys. Fluids 6, 1820– 1837 (1994).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Pumir, A. A numerical study of the mixing of a passive scalar in 3 dimensions in the presence of a mean gradient. Phys. Fluids 6, 2118–2132 (1994).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Gawcedzki, K. & Kupiainen, A. Anomalous scaling of the passive scalar. Phys. Rev. Lett. 75, 3834– 3837 (1995).

    Article  ADS  Google Scholar 

  19. Chertkov, M., Falkovich, G., Kolokolov, I. & Lebedev, V. Normal and anomalous scaling of the fourth-order correlation function of randomly advected passive scalar. Phys. Rev. E 52, 4929–4941 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  20. Shraiman, B. I. & Siggia, E. D. Anomalous scaling of a passive scalar in a turbulent flow. C.R. Acad. Sci. 321, 279–284 (1995).

    CAS  MATH  Google Scholar 

  21. Antonia, R. A. & van Atta, C. W. Structure functions of temperature fluctuations in turbulent shear flows. J. Fluid Mech. 84, 561–580 ( 1978).

    Article  ADS  Google Scholar 

  22. Gibson, C., Freihe, C. & McConnell, S. Structure of sheared turbulent fields. Phys. Fluids 20, S156–S167 ( 1977).

    Article  ADS  Google Scholar 

  23. Mestayer, P. G. Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 125, 475– 503 (1982).

    Article  ADS  Google Scholar 

  24. Jayesh, & Warhaft, Z. Probability distributions of a passive scalar in grid generated turbulence. Phys. Rev. Lett. 67, 3503–3506 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Mydlarsky, L., Pumir, A., Shraiman, B. I., Siggia, E. D. & Warhaft, Z. Structure and multi-point correlators for turbulent advection. Phys. Rev. Lett. 81, 4373–4376 (1998).

    Article  ADS  Google Scholar 

  26. Gollub, J. P., Clarke, J., Gharib, M., Lane, B. & Mesquita, O. N. Fluctuations and transport in a stirred fluid with a mean gradient. Phys. Rev. Lett. 67, 3507 –3511 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Ottino, J. M. The Kinematics of Mixing: Stretching, Chaos, and Transport (Cambridge Univ. Press, New York, 1989).

    MATH  Google Scholar 

  28. Ott, E. Chaos in Dynamical Systems (Cambridge Univ Press, New York, 1994).

    MATH  Google Scholar 

  29. Williams, B. S., Marteau, D. & Gollub, J. P. Mixing of a passive scalar in magnetically forced two-dimensional turbulence. Phys. Fluids 9, 2061–2080 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. Miller, P. L. & Dimotakis, P. E. Measurements of scalar power spectra in high Schmidt number turbulent jets. J. Fluid Mech. 308, 129–146 (1996).

    Article  ADS  Google Scholar 

  31. Chen, S. & Kraichnan, R. H. Simulations of a randomly advected passive scalar field. Phys. Fluids 68, 2867 –2884 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  32. Feynman, R. & Hibbs, A. Quantum Mechanics and Path Integrals (McGraw Hill, New York, 1965).

    MATH  Google Scholar 

  33. Drummond, I. T. Path-integral for turbulent diffusion. J. Fluid Mech. 123, 59–68 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  34. Molchanov, S., Ruzmaikin, A. & Sokolov, A. Kinematic dynamo. Sov. Phys. Usp. 28, 307–327 (1985).

    Article  ADS  Google Scholar 

  35. Shraiman, B. I. & Siggia, E. D. Lagrangian path integrals and fluctuations in random flow. Phys. Rev. E 49, 2912–2927 (1994).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  36. Bernard, D., Gawedzki, K. & Kupiainen, A. Slow modes in passive advection. J. Stat. Phys. 90, 519–569 ( 1997).

    Article  ADS  MathSciNet  Google Scholar 

  37. Chertkov, M., Falkovich, G. & Kolokolov, I. Intermittent dissipation in PS turbulence. Phys. Rev. Lett. 80, 2121–2124 (1998).

    Article  ADS  CAS  Google Scholar 

  38. Buck, K. A. & Dahm, W. J. A. Experimental study of the fine scale structure of conserved scalar mixing in turbulent shear flows. Part I. Sc 1. J. Fluid Mech. 317, 21– 71 (1996).

    Article  ADS  Google Scholar 

  39. Fairhall, A., Gat, O., L'vov, V. & Procaccia, I. Anomalous scaling in a model of passive scalar advection. Phys. Rev. E 53, 3518–3535 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  40. Shraiman, B. I. & Siggia, E. D. Symmetry and scaling of turbulent mixing. Phys. Lett. 77, 2463–2466 (1996); Anomalous scaling of passive scalar near Batchelor limit. Phys. Rev. E 57, 2965–2977 (1998).

    Article  CAS  Google Scholar 

  41. Pumir, A., Shraiman, B. I. & Siggia, E. D. Perturbation theory for the δ-correlated model of passive scalar advection near the Batchelor limit. Phys. Rev. E 55, R1263–R1266 ( 1997).

    Article  ADS  CAS  Google Scholar 

  42. Balkovsky, E., Chertkov, M., Kolokolov, I. & Lebedev, V. 4-th order correlation fucntion of a randomly advected passive scalar. JETP Lett. 61, 1049–1054 (1995).

    ADS  Google Scholar 

  43. Pumir, A. Anomalous scaling behaviour of a passive scalar in the presence of a mean gradient. Europhys. Lett. 34, 25– 29 (1996).

    Article  ADS  CAS  Google Scholar 

  44. Pumir, A. Structure of the three-point correlation function of a passive scalar in the presence of a mean gradient. Phys. Rev. E 57, 2914–2929 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  45. Frisch, U., Mazzino, A., Noullez, A. & Vergassola, M. Lagrangian method for multiple correlations in passive scalar advection. Phys. Fluids. 11, 2178–2186 (1999).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. Celani, A., Lanotte, A., Mazzino, A. & Vergassola, M. Universality and saturation of intermittency in passive scalar turbulence. Phys. Rev. Lett. 84, 2385–2388 (2000).

    Article  ADS  CAS  Google Scholar 

  47. Chertkov, M. Instanton for random advection. Phys. Rev. E 55, 2722–2735 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  48. Balkovsky, E. & Lebedev, V. Instanton for the Kraichnan random advection model. Phys. Rev. E 58, 5776– 5795 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  49. Chertkov, M., Falkovich, G., Kolokolov, V. & Vergassola, M. Small scale magnetic dynamo. Phys. Rev. Lett. 83, 4065–4068 (1999).

    Article  ADS  CAS  Google Scholar 

  50. Chertkov, M., Kolokolov, L., Vergassola, M. Inverse versus direct cascades in turbulent advection. Phys. Rev. Lett. 80, 512–515 ( 1998).

    Article  ADS  CAS  Google Scholar 

  51. Fournier, J.-D., Frisch, U. & Rose, H. Infinite-dimensional turbulence. J. Phys. A 11, 187–198 ( 1978).

    Article  ADS  MathSciNet  Google Scholar 

  52. Wilson, K. G. The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583–600 ( 1983).

    Article  ADS  MathSciNet  Google Scholar 

  53. Pumir, A. & Shraiman, B. I. Persistent small scale anisotropy in homogeneous shear flows. Phys. Rev. Lett. 75, 3114–3117 (1995).

    Article  ADS  CAS  Google Scholar 

  54. Warhaft, Z. & Garg, S. On the small scale structure of simple shear flow. Phys. Fluids 10, 662– 673 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors have greatly benefited from interactions with colleagues, and are particularly grateful to S. Chen, K. Sreenivasan, P. Tabeling, Z. Warhaft and L. Mydlarski for contributing to the figures.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shraiman, B., Siggia, E. Scalar turbulence. Nature 405, 639–646 (2000). https://doi.org/10.1038/35015000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing