Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interferometric radar measurements of water level changes on the Amazon flood plain

Abstract

Measurements of water levels in the main channels of rivers, upland tributaries and floodplain lakes are necessary for understanding flooding hazards, methane production, sediment transport and nutrient exchange. But most remote river basins have only a few gauging stations and these tend to be restricted to large river channels. Although radar remote sensing techniques using interferometric phase measurements have the potential to greatly improve spatial sampling, the phase is temporally incoherent over open water and has therefore not been used to determine water levels. Here we use interferometric synthetic aperture radar (SAR) data1,2,3, acquired over the central Amazon by the Space Shuttle imaging radar mission4, to measure subtle water level changes in an area of flooded vegetation on the Amazon flood plain. The technique makes use of the fact that flooded forests and floodplain lakes with emergent shrubs permit radar double-bounce returns from water and vegetation surfaces5,6, thus allowing coherence to be maintained. Our interferometric phase observations show decreases in water levels of 7–11 cm per day for tributaries and lakes within 20 km of a main channel and 2–5 cm per day at distances of 80 km. Proximal floodplain observations are in close agreement with main-channel gauge records, indicating a rapid response of the flood plain to decreases in river stage. With additional data from future satellite missions, the technique described here should provide direct observations important for understanding flood dynamics and hydrologic exchange between rivers and flood plains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SIR-C swath and location map.
Figure 2: SIR-C L-HH flattened interferogram (left) and amplitude composite (right).

Similar content being viewed by others

References

  1. Goldstein, R. M., Engelhardt, H., Kamb, B. & Frolich, R. M. Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science 262, 1525– 1530 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Massonnet, D. et al. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364, 138– 142 (1993).

    Article  ADS  Google Scholar 

  3. Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A. & Werner, C. L. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. J. Geophys. Res. 99, 19617– 19634 (1994).

    Article  ADS  Google Scholar 

  4. Stofan, E. R., et al. Overview of results of Spaceborne Imaging Radar-C, X-band synthetic aperture radar (SIR-C/X-SAR). IEEE Trans. Geosci. Remote Sensing 33, 817–828 ( 1995).

    Article  ADS  Google Scholar 

  5. Hess, L. L., Melack, J. M., Filoso, S. & Wang, Y. Delineation of inundated area and vegetation along the Amazon floodplain with SIR-C synthetic aperture radar. IEEE Trans. Geosci. Remote Sensing 33, 896–904 (1995).

    Article  ADS  Google Scholar 

  6. Wang, Y., Hess, L. L., Filoso, S. & Melack, J. M. Understanding the radar backscattering from flooded and nonflooded Amazonian forests: Results from canopy backscatter modeling. Remote Sensing Environ. 54, 324–332 (1995).

    Article  ADS  Google Scholar 

  7. Richey, J. E. et al. Sources and routing of the Amazon river flood wave. Glob. Biogeochem. Cycles 3, 191–204 (1989).

    Article  ADS  Google Scholar 

  8. Dunne, T., Mertes, L. A. K., Meade, R. H., Richey, J. E. & Forsberg, B. R. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. GSA Bull. 110, 450–467 ( 1998).

    Article  Google Scholar 

  9. Lesack, L. F. W. & Melack, J. M. Flooding hydrology and mixture dynamics of lake water derived from multiple sources in an Amazon floodplain lake. Wat. Resour. Res. 31, 329 –345 (1995).

    Article  ADS  Google Scholar 

  10. Melack, J. M. & Forsberg, B. R. in The Biogeochemistry of the Amazon Basin and its Role in a Changing World (eds McClain, M. E., Victoria, R. L. Richey, J. E.) (Oxford Univ. Press, New York, in the press).

  11. Birkett, C. M. The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J. Geophys. Res. 100, 25179 –25204 (1995).

    Article  ADS  Google Scholar 

  12. Birkett, C. M. Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands. Wat. Resour. Res. 34, 1223–1239 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Mertes, L. A. K. Documentation and significance of the perirheic zone on inundated floodplains. Wat. Resour. Res. 33, 1749– 1762 (1997).

    Article  ADS  Google Scholar 

  14. Smith, L. C. Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. Processes 11, 1427– 1439 (1997).

    Article  ADS  Google Scholar 

  15. Mertes, L. A. K. et al. Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of the Amazon River in Brazil from a remote sensing perspective. Geomorphology 13, 215– 232 (1995).

    Article  ADS  Google Scholar 

  16. Sippel, S. J., Hamilton, S. K., Melack, J. M. & Novo, E. M. M. Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain. Int. J. Remote Sensing 19, 3055–3074 (1998).

    Article  ADS  Google Scholar 

  17. Peltzer, G. & Rosen, P. Surface displacement of the 17 May 1993 Eureka Valley, California, earthquake observed by SAR interferometry. Science 268, 1333–1336 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Wicks, C., Thatcher, W. & Dzurisin, D. Migration of fluids beneath Yellowstone caldera inferred from satellite radar interferometry. Science 282, 458–462 (1998).

    Article  ADS  Google Scholar 

  19. Burgmann, R., Fielding, E. & Sukhatme, J. Slip along the Hayward fault, California, estimated from space-based synthetic aperture radar interferometry. Geology 26, 559–562 ( 1998).

    Article  ADS  Google Scholar 

  20. Rignot, E. J., Gogineni, S. P., Krabill, W. B. & Ekholm, S. North and northeast Greenland ice discharge from satellite radar inteferometry. Science 272, 934–937 (1997).

    Article  Google Scholar 

  21. Joughin, I., Kwok, R. & Fahnestock, M. Estimation of ice-sheet motion using satellite radar interferometry: Method and error analysis with application to Humboldt Glacier, Greenland. J. Glaciol. 42, 564– 575 (1996).

    Article  ADS  Google Scholar 

  22. Li, F. K. & Goldstein, R. M. Studies of multibaseline spaceborne interferometric synthetic aperture radars. IEEE Trans. Geosci. Remote Sensing 28, 88–97 (1990).

    Article  ADS  Google Scholar 

  23. Zebker, H. A. & Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sensing 30 , 950–959 (1992).

    Article  ADS  Google Scholar 

  24. Rosen, P. A., Hensley, S., Zebker, H. A., Webb, F. H. & Fielding, E. J. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. J. Geophys. Res. 101, 23109– 23125 (1996).

    Article  ADS  Google Scholar 

  25. Massonnet, D. & Rabaute, T. Radar interferometry: Limits and potential. IEEE Trans. Geosci. Remote Sensing 31, 455–464 (1993).

    Article  ADS  Google Scholar 

  26. Zebker, H. A., Rosen, P. A., Hensley, S. & Mouginis-Mark, P. J. Analysis of active lava flows on Kilauea volcano, Hawaii, using SIR-C radar correlation measurements. Geology 24, 495 –498 (1996).

    Article  ADS  Google Scholar 

  27. Rignot, E. Dual-frequency interferometric SAR observations of a tropical rain-forest. Geophys. Res. Lett. 23, 993– 996 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Zebker, C. Birkett and J. Ridley for comments on the manuscript. The Cornell Theory Center provided the computer resources necessary for SAR processing. Gamma Remote Sensing Research and Consulting provided SAR technical advice. This work was supported by NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Alsdorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alsdorf, D., Melack, J., Dunne, T. et al. Interferometric radar measurements of water level changes on the Amazon flood plain. Nature 404, 174–177 (2000). https://doi.org/10.1038/35004560

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35004560

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing