Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wavelength sensitivity in blindsight

Abstract

BLINDSIGHT—the residual visual functions observed in visual-field defects resulting from destruction of part of the primary visual cortex (striate cortex) even though visual stimuli presented in the field defect are not consciously perceived—has generated new insights into the nature of consciousness and the role of the extrastriate pathways in visual processing. Some patients can detect and localize unseen stimuli when they are required to guess1–4. Discrimination of movement5,6, flicker5,7 and orientation4,8 may also be present, but residual colour discrimination is controversial. Negative results (see ref. 9 for review) imply that only the pathways from eye to striate cortex can transmit information about colour in primates. By measuring sensitivity to light of different wavelengths in patients with blindsight we show that spectral sensitivity in the blind fields is surprisingly high, with a reduction of only 1 log unit or less across the visible spectrum. It is also essentially normal in form, whether the patients are adapted to light or dark. The shift in peak sensitivity from medium to shorter wavelengths in adaptation to the dark (the Purkinje shift) and the presence of discontinuities in the light-adapted curve together show that blindsight involves both rod and cone contributions, and that some colour opponency remains. As colour opponency requires input from primate beta retinal ganglion cells, two-thirds of which degenerate transneurally after a striate cortical lesion in juvenile monkeys10, our results show that the surviving subpopulation of primate beta cells is functional.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Perenin, M. T. & Jeannerod, M. Neuropsychologia 16, 1–13 (1978).

    Article  CAS  Google Scholar 

  2. Pöppel, E., Held, R. & Frost, D. Nature 243, 295–296 (1973).

    Article  ADS  Google Scholar 

  3. Stoerig, P. & Pöppel, E. Expl Brain Res. 64, 469–475 (1986).

    Article  CAS  Google Scholar 

  4. Weiskrantz, L., Warrington, E. K., Sanders, M. D. & Marshall, J. Brain 97, 709–728 (1973).

    Article  Google Scholar 

  5. Barbur J. L., Ruddock, K. H. & Waterfield, V. A. Brain 103, 905–928 (1980).

    Article  CAS  Google Scholar 

  6. Weiskrantz, L. Blindsight (Clarendon, Oxford. 1986).

    Google Scholar 

  7. Blythe, I. M., Kennard, C. & Ruddock, K. H. Brain 110, 887–905 (1987).

    Article  Google Scholar 

  8. Perenin, M. T. Neuropsychologia 16, 697–708 (1978).

    Article  CAS  Google Scholar 

  9. Stoerig, P. Brain 110, 869–886 (1987).

    Article  Google Scholar 

  10. Cowey, A., Stoerig, P. & Perry, V. H. Neuroscience 29, 65–80 (1989).

    Article  CAS  Google Scholar 

  11. Van Buren, J. M. The Retinal Ganglion Cell Layer (Charles Thomas, Springfield, 1963).

    Google Scholar 

  12. Bender, M. B. & Krieger, H. P. Archs. Neurol. Psychiat., Chicago 65, 72–79 (1951).

    Article  CAS  Google Scholar 

  13. Keating, E. G. Brain Res. 179, 379–384 (1979).

    Article  CAS  Google Scholar 

  14. Schilder, P., Pasik, P. & Pasik, T. Expl Brain Res. 14, 436–448 (1972).

    Article  CAS  Google Scholar 

  15. Leporé, F., Cardu, B., Rasmussen, T. & Malmo, R. B. Brain Res. 93, 203–221 (1975).

    Article  Google Scholar 

  16. Klüver, H. J. Psychol. 11, 23–45 (1941).

    Article  Google Scholar 

  17. Snelgar, R. S., Foster, D. H. & Scase, M. O. Vision Res. 27, 1017–1027 (1987).

    Article  CAS  Google Scholar 

  18. Sperling, H. G. & Harwerth, R. S. Science 172, 180–184 (1971).

    Article  ADS  CAS  Google Scholar 

  19. King-Smith, P. E. & Carden, D. J. opt. Soc. Am. 66, 709–717 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Gouras, P. J. Physiol., Land. 199, 533–547 (1968).

    Article  CAS  Google Scholar 

  21. Lee, J. & Strohmeyer, C. F. J. Physiol., Lond 413, 563–593 (1989).

    Article  CAS  Google Scholar 

  22. Cowey, A. & Stoerig, P. Expl Brain Res. 75, 631–638 (1989).

    Article  CAS  Google Scholar 

  23. Felsten, G., Benevento, L. A. & Burman, D. Brain Res. 288, 363–367 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoerig, P., Cowey, A. Wavelength sensitivity in blindsight. Nature 342, 916–918 (1989). https://doi.org/10.1038/342916a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342916a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing