Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-frequency nanometre-scale vibration in 'quiescent' flagellar axonemes

Abstract

THE movement of cilia and flagella is based on the interaction between dynein arms and microtubules coupled with ATP hydroly-sis. Although it is established that dynein arms cause adjacent microtubules to slide, little is known about the elementary process underlying the force production. To look more closely at the mechano-chemical conversion mechanism, we recently developed an optical method for measuring a nanometre-scale displacement with a time-resolution better than 1 ms. We now report the detection of high frequency ( 300 Hz) vibration of sub-nanometre ampli-tude in non-beating flagellar axonemes. This vibration could reflect the movement of individual activated dynein arms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gibbons, I. R. & Frank, E. J. biol. Chem. 254, 187–196 (1979).

    CAS  PubMed  Google Scholar 

  2. Omoto, C. K. & Johnson, K. A. Biochemistry 25, 419–427 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Yokota, E., Mabuchi, I. & Sato, H. J. Biochem., Tokyo 102, 31–41 (1987).

    Article  CAS  Google Scholar 

  4. Johnson, K. A. A. Rev. Biophys. biophys. Chem. 14, 161–188 (1985).

    Article  CAS  Google Scholar 

  5. Kamimura, S. Appl. Opt. 26, 3425–3427 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Gibbons, B. H. & Gibbons, I. R. J. cell. Biol. 54, 75–97 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gibbons, I. R., Evans, J. A. & Gibbons, B. H. Cell Motil. 1, 181–184 (1982).

    Article  Google Scholar 

  8. Brokaw, C. J. & Simonick, T. F. J. Cell Sci. 23, 227–241 (1977).

    CAS  PubMed  Google Scholar 

  9. Yano, Y. & Miki-Noumura, T. J. Cell Sci. 44, 169–186 (1980).

    CAS  PubMed  Google Scholar 

  10. Takahashi, K., Shingyoji, C. & Kamimura, S. in Prokaryotic and Eukaryotic Flagella (eds Amos, W. B. & Duckett, J. G.) 159–177 (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  11. Kobayashi, T., Martensen, T., Nath, J. & Flavin, M. Biochem. biophys. Acta 16, 146–154 (1978).

    Google Scholar 

  12. Gibbons, I. R. et al. Proc. natn. Acad. Sci. U.S.A. 75, 2220–2224 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Gibbons, B. H., Tang, W.-J. Y. & Gibbons, I. R. J. cell. Biol. 101, 1281–1287 (1975).

    Article  Google Scholar 

  14. Gibbons, B. H. & Gibbons, I. R. J. cell. Biol. 84, 13–27 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Brokaw, C. J. Science 207, 1365–1367 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Sale, W. S. J. cell. Biol. 102, 2042–2052 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Murase, M. & Shimizu, H. J. theor. Biol. 119, 409–433 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Sale, W. S. & Satir, P. Proc. natn. Acad. Sci. U.S.A. 74, 2045–2049 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Brokaw, C. J. & Benedict, B. Archs Biochem. Biophys. 125, 770–778 (1968).

    Article  CAS  Google Scholar 

  20. Shimizu, T. & Johnson, K. A. J. biol. Chem. 258, 13833–13840 (1983).

    CAS  PubMed  Google Scholar 

  21. Pringle, J. W. S. Proc. R. Soc. B201, 107–130 (1978).

    ADS  CAS  Google Scholar 

  22. Gelles, J., Schnapp, B. J. & Sheetz, M. P. Nature 331, 450–453 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Anner, B. & Moosmayer, M. Analyt. Biochem. 65, 305–319 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. Lowry, O. H., Rosenbrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1952).

    Google Scholar 

  25. Takahashi, K. & Kamimura, S. J. submicrosc. Cytol. 15, 1–3 (1983).

    CAS  PubMed  Google Scholar 

  26. Crawford, A. C. & Fettiplace, R. J. Physiol., Lond. 364, 359–380 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oiwa, K. & Takahashi, K. Cell Struct. Funct. 13, 193–205 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Howard, J. & Hudspeth, A. J. Proc. natn. Acad. Sci. U.S.A. 84, 3064–3068 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Goldstein, D. A. Biophys. J. 26, 235–242 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamimura, S., Kamiya, R. High-frequency nanometre-scale vibration in 'quiescent' flagellar axonemes. Nature 340, 476–478 (1989). https://doi.org/10.1038/340476a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340476a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing