Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The helical repeat of double-stranded DNA varies as a function of catenation and supercoiling

Abstract

DNA in the cell is intertwined at several levels: one polynucleotide strand wraps helically around its complement and the double helix is in turn coiled in space. The higher-order intertwining most often takes the form of supercoiling of the helix axis1, but can also be observed as the wrapping of one DNA duplex around another, as in catenation2,3. We have investigated the relationship between intertwining at these three levels, the double helix, supercoiling, and catenation, using an approach that relies on comparative measurements of DNA linking numbers by gel electrophoresis. The method determines both the handedness of DNA catenanes and the change in helical repeat that accompanies catenation-induced supercoiling. For multiply-linked catenated rings of 3.5 kilobase pairs (kb), we conclude that the double helix unwinds by two-thirds of a turn for every right-handed supercoil involved in linking the two circles. Altering the geometry of the catenanes by linking rings of dissimilar size changes the effect of catenation on helical and superhelical parameters. Our experiments used intact DNA rings, but we note that linear DNA molecules, by virtue of their subdivision into closed loops or domains in vivo, can intertwine in the same ways4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wang, J. C. A. Rev. Biochem. 54, 665–697 (1985).

    Article  CAS  Google Scholar 

  2. Sundin, O. & Varshavsky, A. Cell 21, 103–114 (1980); 25, 659–669 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Wasserman, S. A. & Cozzarelli, N. R. Science 232, 951–960 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Worcel, A. & Burgi, E. J. molec. Biol. 71, 127–147 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. Vinograd, J., Lebowitz, J. & Watson, R. J. molec. Biol. 33, 173–192 (1968).

    Article  CAS  PubMed  Google Scholar 

  6. White, J. H., Cozzarelli, N. R. & Bauer, W. R. Science 241, 323–327 (1988).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  7. Germond, J. E., Hirt, B., Oudet, P., Gross-Bellark, M. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 72, 1843–1847 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Nash, H. A. A. Rev. Genet. 15, 143–167 (1981).

    Article  CAS  Google Scholar 

  9. Spengler, S. J., Stasiak, A. & Cozzarelli, N. R. Cell 42, 325–334 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Krasnow, M. A. & Cozzarelli, N. R. Cell 32, 1313–1324 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Horowitz, D. S. & Wang, J. C. J. molec. Biol. 173, 75–91 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Shore, D. & Baldwin, R. L. J. molec. Biol. 170, 983–1007 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Levitt, M. Proc. natn. Acad. Sci. U.S.A. 75, 640–644 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Klug, A. & Lutter, L. C. Nucleic Acids Res. 9, 4266–4283 (1981).

    Article  Google Scholar 

  15. Bliska, J. B. & Cozzarelli, N. R. J. molec. Biol. 194, 205–218 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Craigie, R. & Mizuuchi, K. Cell 45, 793–800 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Kreuzer, K. N. & Jongeneel, C. V. Meth. Enzy. 100, 144–160 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasserman, S., White, J. & Cozzarelli, N. The helical repeat of double-stranded DNA varies as a function of catenation and supercoiling. Nature 334, 448–450 (1988). https://doi.org/10.1038/334448a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334448a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing