Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli

Abstract

Rational design of novel as well as improved cellular biocatalysts by genetic manipulation of cellular metabolism has recently attracted considerable interest. A wide range of bacteria have been genetically modified by integrating new enzymatic functions into their metabolic network1–7. A central problem in the aerobic growth of any cell culture is the maintenance of dissolved oxygen (DO) concentrations above growth-limiting levels especially in high cell-density fermentations which are usually of a fed-batch type. The optimal rate of nutrient addition (and consequently the productivity) is ultimately limited by the rate at which cells can aerobically catabolize the carbon source without generating growth-inhibitory metabolites such as lactate and acetate8,9. All approaches thus far have concentrated on improving the oxygen mass transfer rates by manipulating various environmental parameters. We10 have isolated the gene for a haemoglobin-like molecule, expressed by the aerobic bacterium Vitreoscilla in poorly-oxygenated environments11,12, and expressed it in Escherichia coli. The recombinant cells contain enhanced haem as well as active haemoglobin, and they grow faster and to considerably greater cell densities than comparable plasmid-containing cells which do not express haemoglobin. This haemoglobin increases the rate of oxygen use, especially when dissolved oxygen is less than 5% of air saturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reineke, W. & Knackmuss, H. J. Nature 277, 385–386 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Ensley, B. D. et al. Science 222, 167–169 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Anderson, S. et al. Science 230, 144–149 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hopwood, D. A. et al. Nature 314, 642–644 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Mermod, N., Harayama, S. & Timmis, K. N. Biotechnology 4, 321–324 (1986).

    CAS  Google Scholar 

  6. Stanzak, R., Matsushima, P., Baltz, R. H. & Rao, R. N. Biotechnology 4, 229–232 (1986).

    CAS  Google Scholar 

  7. Windass, J. D. et al. Nature 287, 396–401 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Zabriskie, D. W. & Arcuri, E.J. Enzym. microb. Technol. 8, 706–717 (1986).

    Article  CAS  Google Scholar 

  9. Tsai, L. B. et al. J. ind. Microbiol. 2, 181–187 (1987).

    Article  CAS  Google Scholar 

  10. Khosla, C. S. & Bailey, J. E. Molec. gen. Genet. (submitted).

  11. Wakabayashi, S., Matsubara, H. & Webster, D. A. Nature 322, 481–483 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Boerman, S. J. & Webster, D. A. J. gen. appl. Microbiol. 28, 35–43 (1982).

    Article  CAS  Google Scholar 

  13. Anraku, Y. & Gennis, R. B. Trends biochem. Sci. 12, 262–266 (1987).

    Article  CAS  Google Scholar 

  14. Cox, R. & Charles, H. P. J. Bact. 113, 122–132 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Webster, D. A. & Liu, C. Y. J. biol. Chem. 249, 4257–4260 (1974).

    CAS  PubMed  Google Scholar 

  16. Oosterhuis, N. M. G. & Kosen, N. W. F. Biotechnol. Bioengng. 26, 546–550 (1984).

    Article  CAS  Google Scholar 

  17. Vardar, F. Process Biochem. 18, 21–23 (1983).

    Google Scholar 

  18. Wittrup, K. D., Mann, M., Fenton, D., Tsai, L. & Bailey, J. E. Biotechnology (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khosla, C., Bailey, J. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331, 633–635 (1988). https://doi.org/10.1038/331633a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331633a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing