Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A new type of glutamate receptor linked to inositol phospholipid metabolism

Abstract

Receptors for excitatory amino acids in the mammalian central nervous system are classified into three major subtypes1,2, ones which prefer N-methyl-D-aspartate (NMDA), quisqualate (QA), or kainate (KA) as type agonists respectively. These receptors are considered to mediate fast postsynaptic potentials by activating ion channels directly3–5 (ionotropic type6). Recently it was reported that exposure of mammalian brain cells to glutamate (Glu) or its analogues causes enhanced hydrolysis of inositol phospholipids7,8, but it is not clear whether the enhanced hydrolysis is the cause or effect of physiological responses. Membrane depolarization or Ca2+ influx, which can result from Glu receptor activation9,10, can induce enhanced hydrolysis of inositol phospholipids11. We have characterized the functional properties of two types of excitatory amino-acid responses, those activated by QA (or Glu) and those activated by KA, induced in Xenopus oocytes injected with rat-brain messenger RNA12. We report evidence for a new type of Glu receptor, which prefers Q A as agonist, and which directly activates inositol phospholipid metabolism through interaction with GTP-binding regulatory proteins (Gi or Go13,14), leading to the formation of inositol 1,4,5-trisphosphate (InsP3) and mobilization of intracellular Ca2+. This QA/Glu reaction is inhibited by islet-activating protein (IAP, pertussis toxin15), but was not blocked by Joro spider toxin (JSTX)16, a specific blocker of traditional ionotropic QA/Glu receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Watkins, J. C. & Evans, R. H. A. Rev. Pharmac. Toxicol. 21, 165–204 (1981).

    Article  CAS  Google Scholar 

  2. Fagg, G. E. Trends Neurosci. 8, 207–210 (1985).

    Article  CAS  Google Scholar 

  3. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Cull-Candy, S. G. & Ogden, D. C. Proc. R. Soc. B224, 367–373 (1985).

    ADS  CAS  Google Scholar 

  5. Kiskin, N. I., Krishtal, O. A. & Tsyndrenko, A. Ya. Neurosci. Lett. 63, 225–230 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Eccles, J. C. & McGeer, P. L. Trends Neurosci. 2, 39–40 (1979).

    Article  Google Scholar 

  7. Sladeczek, F., Pin, J. P., Recasens, M., Bockaert, J. & Weiss, S. Nature 317, 717–719 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Nicoletti, F. et al. J. Neurochem. 46, 40–46 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Retz, K. C. & Coyle, J. T. Neuropharmacology 23, 89–94 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. & Barker, J. L. Nature 321, 519–522 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Kendall, D. A. & Nahorski, S. R. J. Neurochem. 42, 1388–1394 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Gundersen, C. B., Miledi, R. & Parker, I. Proc. R. Soc. B221, 127–143 (1984).

    ADS  CAS  Google Scholar 

  13. Sternweis, P. C. & Robishaw, J. D. J. biol. Chem. 259, 13806–13813 (1984).

    CAS  PubMed  Google Scholar 

  14. Neer, E. J., Lok, J. M. & Wolf, L. G. J. biol. Chem. 259, 14222–14229 (1984).

    CAS  PubMed  Google Scholar 

  15. Ui, M. Trends pharmac. Sci. 5, 277–279 (1984).

    Article  CAS  Google Scholar 

  16. Abe, T., Kawai, N. & Miwa, A. J. Physiol., Lond. 339, 243–252 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirono, C., Ito, I. & Sugiyama, H. J. Physiol., Lond. 382, 523–535 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Oron, Y., Dascal, N., Nadler, E. & Lupu, M. Nature 313, 141–143 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Saito, M., Kawai, N., Miwa, A., Pan-Hou, H. & Yoshioka, M. Brain Res. 346, 397–399 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Sugiyama, H., Hisanaga, Y. & Hirono, C. Brain Res. 338, 346–350 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Hirono, C. et al. Brain Res. 359, 57–64 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugiyama, H., Ito, I. & Hirono, C. A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325, 531–533 (1987). https://doi.org/10.1038/325531a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325531a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing