Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Site-directed mutagenesis of the regulatory light-chain Ca2+/Mg2+ binding site and its role in hybrid myosins

Abstract

The regulatory light chains, small polypeptides located on the myosin head, regulate the interaction of myosin with actin in response to either Ca2+ or phosphorylation. The demonstration that the regulatory light chains on scallop myosin can be replaced by light chains from other myosins has allowed us to compare the functional capabilities of different light chains1, but has not enabled us to probe the role of features, such as the Ca2+/Mg2+ binding site, that are common to all of them. Here, we describe the use of site-directed mutagenesis to study the function of that site. We synthesized the chicken skeletal myosin light chain in Escherichia coli and constructed mutants with substitutions within the Ca2+/Mg2+ binding site. When the aspartate residues at the first and sixth Ca2+ coordination positions are replaced by uncharged alanines, the light chains have a reduced Ca2+ binding capacity but still bind to scallop myosin with high affinity. Unlike the wild-type skeletal light chain which inhibits myosin interaction with actin, the mutants activate it. Thus, an intact Ca2+/Mg2+ binding site in the N-terminal region of the light chain is essential for regulating the interaction of myosin with actin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kendrick-Jones, J., Szentkiralyi, E. M. & Szent-Gyorgyi, A. G. J. molec. Biol. 104, 747–775 (1976).

    Article  CAS  Google Scholar 

  2. Baba, M. L., Goodman, M., Berger-Cohn, J., DeMaille, J. G. & Matsuda, G. Molec. biol. Evol. 1, 442–455 (1984).

    CAS  PubMed  Google Scholar 

  3. Kretsinger, R. H. CRC Crit. Rev. Biochem. 8, 119–174 (1980).

    Article  CAS  Google Scholar 

  4. Kretsinger, R. H. & Nockolds, C. E. J. biol. Chem. 248, 3313–3326 (1973).

    CAS  Google Scholar 

  5. Babu, Y. S. et al. Nature 315, 37–40 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Herzberg, O. & James, M. N. G. Nature 313, 653–659 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Sundaralingam, M. et al. Science 227, 945–948 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Collins, J. H. Nature 259, 699–700 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Kendrick-Jones, J. & Jakes, R. in Boehringer International Sympsium on Myocardial Failure (eds Rieker, G., Weber, A. & Goodwing, J.) 28–40 (Springer, Berlin, 1976).

    Google Scholar 

  10. Matsuda, G., Suzuyama, Y., Maita, T. & Umegane, T. FEBS Lett. 84, 53–56 (1977).

    Article  CAS  Google Scholar 

  11. Bagshaw, C. R. & Kendrick-Jones, J. J. molec. Biol. 130, 317–336 (1979).

    Article  CAS  Google Scholar 

  12. Bagshaw, C. R. Biochemistry 16, 59–67 (1977).

    Article  CAS  Google Scholar 

  13. Craig, R. et al. J. molec. Biol. 140, 35–55 (1980).

    Article  CAS  Google Scholar 

  14. Vibert, P. & Craig, R. J. molec. Biol. 157, 299–319 (1982).

    Article  CAS  Google Scholar 

  15. Flicker, P. F., Wallimann, T. & Vibert, P. J. molec. Biol. 169, 723–741 (1983).

    Article  CAS  Google Scholar 

  16. Adelstein, R. S. & Eisenberg, E. A. Rev. Biochem. 49, 921–956 (1980).

    Article  CAS  Google Scholar 

  17. Kendrick-Jones, J. et al. J. molec. Biol. 165, 139–162 (1983).

    Article  CAS  Google Scholar 

  18. Leavis, P. C. & Gergely, J. CRC Crit. Rev. Biochem. 16, 235–305 (1984).

    Article  CAS  Google Scholar 

  19. Persechini, A., Stull, J. T. & Cooke, R. J. biol. Chem. 260, 7951–7954 (1985).

    CAS  PubMed  Google Scholar 

  20. Szent-Gyorgyi, A. G., Szentkiralyi, E. M. & Kendrick-Jones, J. J. molec. Biol. 74, 179–203 (1973).

    Article  CAS  Google Scholar 

  21. Chantler, P. D. & Szent-Gyorgyi, A. G. J. molec. Biol. 138, 473–492 (1980).

    Article  CAS  Google Scholar 

  22. Kendrick-Jones, J. et al. in Basic Biology of Muscles: A Comparative Approach (eds Twarog, B. M., Levine, R. J. C. & Dewey, M. M.) 255–272 (Raven, New York, 1982).

    Google Scholar 

  23. Bagshaw, C. R. & Kendrick-Jones, J. J. molec. Biol. 140, 411–433 (1980).

    Article  CAS  Google Scholar 

  24. Blombäck, M., Blomback, B., Mammen, E. F. & Pradsad, A. S. Nature 218, 314–318 (1968).

    Google Scholar 

  25. Reinach, F. C. & Fischman, D. A. J. molec. Biol. 181, 411–422 (1985).

    Article  CAS  Google Scholar 

  26. Hendry, G. D. et al. FEBS Lett. 144, 11–15 (1982).

    Article  Google Scholar 

  27. Kawasaki, H., Kasai, H. & Okuyama, T. Analyt. Biochem. 148, 297–302 (1985).

    Article  CAS  Google Scholar 

  28. Nagai, K. & Thogersen, H. G. Nature 309, 810–812 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Carter, P., Bedouelle, H. & Winter, G. Nucleic Acids Res. 13, 4431–4443 (1985).

    Article  CAS  Google Scholar 

  30. Murray, N., Bruce, S. A. & Murray, K. J. molec. Biol. 132, 493–505 (1979).

    Article  CAS  Google Scholar 

  31. Nagai, K., Perutz, M. F. & Poyart, C. Proc. natn. Acad. Sci. U.S.A. 82, 7252–7255 (1985).

    Article  ADS  CAS  Google Scholar 

  32. Marston, F. A. O. et al. Biotechnology 2, 800–804 (1984).

    CAS  Google Scholar 

  33. Marston, S. B. Prog. Biophys. molec. Biol. 41, 1–41 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinach, F., Nagai, K. & Kendrick-Jones, J. Site-directed mutagenesis of the regulatory light-chain Ca2+/Mg2+ binding site and its role in hybrid myosins. Nature 322, 80–83 (1986). https://doi.org/10.1038/322080a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322080a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing