Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Idealization of the hydrophobic segment of the alkaline phosphatase signal peptide

Abstract

Proteins secreted by prokaryotic cells are synthesized as precursors containing an amino-terminal extension sequence or signal peptide1. Although these signal peptides share little primary sequence homology, recent studies suggest that they function via common pathways during the transport process2 and that a common element may reside in their secondary structural characteristics3–7. We are investigating the role of an idealized hydrophobic sequence with high potential for α-helix formation in the Escherichia coli alkaline phosphatase signal peptide. Here, amino-acid substitutions were made using site-directed mutagenesis to produce a mutant signal sequence containing nine consecutive leucine residues in the hydrophobic core segment. Transport studies with this mutant precursor indicate that mature alkaline phosphatase is correctly targeted to the E. coli periplasm and that processing of the precursor to the mature form of the enzyme is extremely rapid. In contrast, processing is slowed when the mutant signal sequence is lengthened by the insertion of five additional leucine residues and one serine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Michaelis, S. & Beckwith, J. A. Rev. Microbiol. 36, 435–465 (1982).

    Article  CAS  Google Scholar 

  2. Bankaitis, V. A. & Bassford, P. J. Jr J. biol Chem. 259, 12193–12200 (1984).

    CAS  PubMed  Google Scholar 

  3. Engleman, D. M. & Steitz, T. A. Cell 23, 411–422 (1981).

    Article  Google Scholar 

  4. Reddy, G. L. & Nagaraj, R. Biochim. biophys. Acta 831, 340–346 (1985).

    Article  CAS  Google Scholar 

  5. Bankaitis, V. A., Rasmuseen, B. A. & Bassford, P. J. Jr Cell 37, 243–252 (1984).

    Article  CAS  Google Scholar 

  6. Briggs, M. S. & Gierasch, L. M. Biochemistry 23, 3111–3114 (1984).

    Article  CAS  Google Scholar 

  7. Shinnar, A. E. & Kaiser, E. T. J. Am. chem. Soc. 106, 5006–5007 (1984).

    Article  CAS  Google Scholar 

  8. Von Heijne, G. J. Mol. Biol. 184, 99–105 (1985).

    Article  CAS  Google Scholar 

  9. Emr, S. D. & Silhavy, T. J. Proc. natn. Acad. Sci. U.S.A. 80, 4599–4603 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Arfmann, H.-A., Labitzke, R. & Wagner, K. G. Biopolymers 16, 1815–1826 (1977).

    Article  CAS  Google Scholar 

  11. Chou, P. Y. & Fasman, G. D. A. Rev. Biochem. 47, 251–276 (1978).

    Article  CAS  Google Scholar 

  12. Kaiser, E. T. & Kézdy, F. J. Science 223, 249–255 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Inouye, H., Michaelis, S., Wright, A. & Beckwith, J. J. Bact. 146, 668–675 (1981).

    CAS  PubMed  Google Scholar 

  14. Zoller, M. J. & Smith, M. DNA 3, 479–485 (1984).

    Article  CAS  Google Scholar 

  15. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Ghosh, S. S., Bock, S. C., Rokita, S. E. & Kaiser, E. T. Science 231, 145–148 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Vlasuk, G. P., Inouye, S. & Inouye, M. J. biol. Chem. 259, 6195–6200 (1984).

    CAS  PubMed  Google Scholar 

  18. Zuker, M. & Sankoff, D. Bull. math. Biol. 46, 591–621 (1984).

    Article  CAS  Google Scholar 

  19. Iserentant, D. & Fiers, W. Gene 9, 1–12 (1980).

    Article  CAS  Google Scholar 

  20. Schwartz, M., Roa, M. & Débarbouillé, M. Proc. natn. Acad. Sci. U.S.A. 78, 2937–2941 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Neidhardt, F., Bloch, P. L. & Smith, D. F. J. Bact. 119, 736–747 (1974).

    CAS  PubMed  Google Scholar 

  22. Ito, K., Bassford, P. J. Jr & Beckwith, J. Cell 24, 707–717 (1981).

    Article  CAS  Google Scholar 

  23. Oliver, D. B. & Beckwith, J. Cell 30, 311–319 (1982).

    Article  CAS  Google Scholar 

  24. Laemmli, U. K. Nature 277, 680–685 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kendall, D., Bock, S. & Kaiser, E. Idealization of the hydrophobic segment of the alkaline phosphatase signal peptide. Nature 321, 706–708 (1986). https://doi.org/10.1038/321706a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321706a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing