Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal expansion of silicate perovskite and stratification of the Earth's mantle

Abstract

A pressure of 24 GPa and temperatures of about 2,000–3,000 K correspond to the observed 670-km seismic discontinuity which separates the upper and lower mantle. In such conditions the major minerals of the Earth's upper mantle, olivine ((Mg, Fe)2SiO4), pyroxene ((Mg, Fe)SiO3) and garnet ((Mg, Fe, Ca)3Al2Si3O12) transform to a distorted (orthorhombic) perovskite-structured mineral ((Mg, Fe)SiO3), or to a perovskite-dominated assemblage (refs 1–4). Because silicate perovskite is stable to at least 70 GPa, it is thought to be the most abundant mineral in the lower mantle and, possibly, in the entire Earth. Despite its importance, silicate perovskite was only discovered in 1976, and little is known about its physical properties because of the difficulty in achieving the conditions of pressure and temperature required for the synthesis of this phase. For example, the value of the thermal expansion coefficient of perovskite provides an important constraint on possible compositional models for the lower mantle5–7. We have recently produced sufficient amounts of (Mg0.9, Fe0.1)SiO3 perovskite to measure its zero-pressure thermal expansion to 840 K by X-ray diffraction. At high temperatures, the average thermal expansion coefficient is 4×l0−5K−1. Such a large value for the thermal expansion coefficient implies that standard models of upper mantle composition, such as pyrolite or garnet peridotite (Mg value 0.89), yield zero-pressure densities that are about 2% lower than that of the density of the lower mantle extrapolated to zero pressure conditions. This result suggests that the upper and lower mantle are chemically distinct, in accord with layered models of the thermal and convective state of the mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Akaogi, M. & Akimoto, S. Phys. Earth planet. Inter. 15, 90–106 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Akimoto, S., Yagi, T. & Inoue, K. in High-Pressure Research (eds Manghnani, M. H. & Akimoto, S.) 585–692 (Academic, New York, 1977).

    Book  Google Scholar 

  3. Liu, L. in The Earth: Its Origin Structure and Evolution (ed. McElhinny, M. W.) 177–202 (Academic, New York, 1979).

    Google Scholar 

  4. Yagi, T., Bell, P. M. & Mao, H.-K., Carnegie Instn Wash. 78, 614–615 (1979).

    Google Scholar 

  5. Liu, L. Earth planet. Sci. Lett. 42, 202–208 (1979).

    Article  ADS  Google Scholar 

  6. Jackson, I. Earth planet. Sci. Lett. 62, 91–103 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Jeanloz, R. & Thompson, A. B. Rev. Geophys. Space Phys. 21, 51–74 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Mao, H.-K., Bell, P. M., Dunn, K.J., Chrenko, R. M. & Devries, R. C. Rev. Scient. Instrum. 50, 1002–1009 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Barnett, J. D., Block, S. & Piermarini, G. J. Refv. Scient. Instrum. 44, 1–9 (1973).

    Article  ADS  Google Scholar 

  10. Mao, H.-K., Bell, P. M., Shaner, J. W. & Steinberg, D. J. J. appl. Phys. 49,3276–3283 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Liu, L. Phys. Earth, planet. Inter. 11, 289–298 (1976).

    Article  ADS  CAS  Google Scholar 

  12. Ito, E. & Matsui, Y. Earth planet. Sci. Lett. 38, 435–443 (1978).

    Article  ADS  Google Scholar 

  13. Yagi, T., Mao, H.-K. & Bell, P. M. Phys. Chem. Miner. 3, 97–103 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Yagi, T., Mao, H.-K. & Bell, P. M. Physical Geochemistry (ed. Saxena, S. K.) 317–325 (Springer, New York, 1982).

    Book  Google Scholar 

  15. Suzuki, I. J. Phys. Earth 23, 145–159 (1975).

    Article  Google Scholar 

  16. Suzuki, I., Okajima, S. & Seya, K. J. Phys. Earth 27, 63–69 (1979).

    Article  Google Scholar 

  17. Masters, G., Geophys J.R. astr. Soc. 57, 507–534 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Dziewonski, A. M. & Andersen, D. L. Phys. Earth planet. Inter. 25, 297–357 (1981).

    Article  ADS  Google Scholar 

  19. Birch, F. J. geophys. Res. 69, 4377–4388 (1964).

    Article  ADS  CAS  Google Scholar 

  20. Jeanloz, R. in Convection in the Earth's Mantle (ed. Peltier, W. R.) (Gordon and Breach, New York, in the press).

  21. Davies, G. F. & Dziewonski, A. M. Phys. Earth planet. Inter. 10, 336–343 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Dziewonski, A. M., Hales, A. L. & Lapwood, E. R. Phys. Earth planet. Inter. 10,12–48 (1975).

    Article  ADS  Google Scholar 

  23. Akimoto, S., Akaogi, M., Kawada, K. & Nishizawa, O. in The Geophysics of the Pacific Ocean Basin and Its Margin (eds Sutton, G. H., Manghnani, M. H. & Moberly, R.) 399–405 (AGU, Washington DC, 1976).

    Google Scholar 

  24. Anderson, D. L. Science 157, 1165–1173 (1967).

    Article  ADS  CAS  Google Scholar 

  25. Jeanloz, R. & Richter, F. M. J. geophys. Res. 84, 5497–5504 (1979).

    Article  ADS  Google Scholar 

  26. Touloukian, Y. S., Kirby, R. K., Taylor, R. E. & Lee, T.Y.R. in Thermal Expansion, Non-metallic Solids (TPRC 13) 1658 (IFl/Plenum, New York, 1977).

    Book  Google Scholar 

  27. Ringwood, A. E. Composition and Petrology of the Earth's Mantle (McGraw-Hill, New York, 1975).

    Google Scholar 

  28. Yoder, H. S. Jr., Generation of Basaltic Magmas (National Academy of Sciences, Washington DC, 1976).

    Google Scholar 

  29. Bell, P. M., Yagi, T. & Mao, H.-K. Yb. Carnegie Instn Wash. 78, 618–619 (1979).

    Google Scholar 

  30. Ito, E. & Yamada, H. in High Pressure Research in Geophysics (eds Akimoto, S. & Manghnani, M. H.) 405–419 (Center for Academic Publishing, Tokyo, 1982).

    Book  Google Scholar 

  31. Lees, A. C., Bukowinski, M. S. T. & Jeanloz, R. J. geophys. Res. 88, 8145–8159 (1983).

    Article  ADS  CAS  Google Scholar 

  32. Anderson, D. L. A. Rev. Earth planet. Sci. 5, 179–202 (1977).

    Article  ADS  CAS  Google Scholar 

  33. O'Nions, R. K., Eversen, N. M. & Hamilton, P. J. J. geophys. Res. 84, 6091–6101 (1979).

    Article  ADS  CAS  Google Scholar 

  34. Jacobsen, S. B. & Wasserburg, G. J. J. geophys. Res. 84, 7411–7427 (1979).

    ADS  CAS  Google Scholar 

  35. McKenzie, D. & Richter, F. M. J. geophys. Res. 86, 11667–11680 (1981).

    Article  ADS  Google Scholar 

  36. Richter, F. M. & Johnson, C. E. J. geophys. Res. 79, 1635–1639 (1974).

    Article  ADS  CAS  Google Scholar 

  37. Oison, P. J. geophys. Res. 89, 11293–11301 (1984).

    Article  ADS  Google Scholar 

  38. Hoffman, N. R. A. & McKenzie, D. P., Geophys. J.R. astr. Soc. 82, 163–206 (1985).

    Article  ADS  CAS  Google Scholar 

  39. Creager, K. C. & Jordan, T. H. J. geophys. Rƒ(c)s. 89, 3031–3050 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knittle, E., Jeanloz, R. & Smith, G. Thermal expansion of silicate perovskite and stratification of the Earth's mantle. Nature 319, 214–216 (1986). https://doi.org/10.1038/319214a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319214a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing