Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An enhancer-like sequence within the Xenopus U2 gene promoter facilitates the formation of stable transcription complexes

Abstract

Enhancers are eukaryotic promoter elements that increase tran-scriptional efficiency in a manner relatively independent of their position and orientation with respect to a nearby gene1–3. There is growing evidence that enhancer action is mediated by transacting factors4–8, but the mode of action of these factors is not yet known. We report here on the Xenopus U2 gene promoter, which contains two sequence elements. The distal sequence element increases promoter activity 20-fold by facilitating the formation of stable transcription complexes. A synthetic 14-base-pair (bp) oligonucleotide corresponding to part of the distal sequence element, which shows homology to an immunoglobulin gene promoter element and to both the simian virus 40 (SV40) and the immunoglobulin heavy-chain gene enhancers, stimulates transcription in an orientation-independent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Banerji, J., Rusconi, S. & Schaffner, W. Cell 27, 299–308 (1981).

    Article  CAS  Google Scholar 

  2. Moreau, P., Hen, R., Wasylyk, B., Everett, R., Gaub, M. P. & Chambon, P. Nucleic Acids Res. 9, 6047–6068 (1981).

    Article  CAS  Google Scholar 

  3. Cereghini, S. et al. Cold Spring Harb. Symp. quant. Biol. 47, 935–944 (1982).

    Article  CAS  Google Scholar 

  4. Banerji, J., Olson, L. & Schaffner, W. Cell 33, 729–740 (1983).

    Article  CAS  Google Scholar 

  5. Gillies, S. D., Morrison, S. L., Oi, V. T. & Tonegawa, S. Cell 33, 717–728 (1983).

    Article  CAS  Google Scholar 

  6. Borrelli, E., Hen, R. & Chambon, P. Nature 312, 608–612 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Wildemann, A. G., Sassone-Corsi, P., Grundström, T., Zenke, M. & Chambon, P. EMBO J. 3, 3129–3133 (1984).

    Article  Google Scholar 

  8. Ephrussi, A., Church, G. M., Tonegawa, S. & Gilbert, W. Science 227, 134–140 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Ares, M. Jr, Mangin, M. & Weiner, A. M. Molec. cell Biol. (in the press).

  10. Mattaj, I. W. & Zeller, R. EMBO J. 2, 1883–1891 (1983).

    Article  CAS  Google Scholar 

  11. Roop, D. R., Kristo, P., Stumph, W. E., Tsai, M. J. & O'Malley, B. W. Cell 23, 671–680 (1981).

    Article  CAS  Google Scholar 

  12. Murphy, J. T., Burgess, R. R., Dahlberg, J. E. & Lund, E. Cell 29, 265–274 (1982).

    Article  CAS  Google Scholar 

  13. Zeller, R., Carri, M.-T., Mattaj, I. W. & De Robertis, E. M. EMBO J. 3, 1075–1081 (1984).

    Article  CAS  Google Scholar 

  14. Mattaj, I. W. Trends biochem. Sci. 9, 435–437 (1984).

    Article  CAS  Google Scholar 

  15. Skuzeski, J. et al. J. biol. Chem. 259, 8345–8353 (1984).

    CAS  PubMed  Google Scholar 

  16. Westin, G., Lund, E., Murphy, J. T., Pettersson, U. & Dahlberg, J. E. EMBO J. 3, 3295–3301 (1984).

    Article  CAS  Google Scholar 

  17. Bogenhagen, D. F., Wormington, W. M. & Brown, D. D. Cell 28, 413–421 (1982).

    Article  CAS  Google Scholar 

  18. Brown, D. D. Cell 37, 359–365 (1984).

    Article  CAS  Google Scholar 

  19. Reeder, R. H., Roan, J. G. & Dunaway, M. Cell 35, 449–456.

  20. Parslow, T. G., Blair, D. L., Murphy, W. J. & Granner, D. K. Proc. natn. Acad. Sci. U.S.A. 81, 2650–2654 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Falkner, F. G. & Zachau, H. G. Nature 310, 71–74 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Gruss, P., Dhar, R. and Khoury, G. Proc. natn. Acad. Sci. U.S.A. 78, 943–947 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Krol, A., Lund, E. & Dahlberg, J. EMBO J. (in the press).

  24. Ciliberto, G., Buckland, R., Cortese, R. & Philipson, L. EMBO J. (in the press).

  25. Labhart, P. & Reeder, R. H. Cell 37, 285–289 (1984).

    Article  CAS  Google Scholar 

  26. Grosschedl, R. & Birnstiel, M. L. Proc. natn. Acad. Sci. U.S.A. 77, 7102–7106 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Tani, T., Watanabe-Nagasu, N., Okada, N. & Oshima, Y. J. molec. Biol 168, 579–584 (1983).

    Article  CAS  Google Scholar 

  28. Messing, J. & Vieira, J. Gene 19, 269–276 (1982).

    Article  CAS  Google Scholar 

  29. Mattaj, I. W. & De Robertis, E. M. Cell 40, 111–118 (1985).

    Article  CAS  Google Scholar 

  30. Mattaj, I. W. et al. in The Oxford Surveys on Eukaryotic Genes (Oxford University Press, in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattaj, I., Lienhard, S., Jiricny, J. et al. An enhancer-like sequence within the Xenopus U2 gene promoter facilitates the formation of stable transcription complexes. Nature 316, 163–167 (1985). https://doi.org/10.1038/316163a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316163a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing