Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retene—a molecular marker of wood combustion in ambient air

Abstract

The use of wood as a fuel has increased since the oil embargo in 1973. Several studies have shown that wood combustion may make a significant contribution to air pollution. Using 14C as a tracer for contemporary carbonaceous materials, 30–70% of the atmospheric carbon has been shown to originate from wood combustion in areas affected by this source1–3. Other studies have shown that emissions from wood combustion contain large amounts of particles4–6 and organic compounds, one class being poly cyclic aromatic hydrocarbons (PAH)7–11. However, these compounds are also formed by combustion of other carbonaceous materials. In our studies on PAH in wood combustion emissions and in ambient air in wood-heated residential areas, we have identified several PAH compounds which may be related to combustion of coniferous wood. These are alkylated phenanthrene compounds with the main compound 1-methyl-7-isopropylphenanthrene (trivial name retene) formed by thermal degradation of resin compounds in the wood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wolff, G. T. et al. Atmos. Envir. 15, 2485–2502 (1981).

    Article  CAS  Google Scholar 

  2. Cooper, J. A., Currie, L. A. & Klouda, G. A. Envir. Sci. Technol. 15, 1045–1050 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Ramdahl, T. et al. Sci. total Envir. (in the press).

  4. Butcher, S. S. & Ellenbecker, M. J. J. Air Pollut. Control Ass. 32, 380–384 (1982).

    Article  CAS  Google Scholar 

  5. Dasch, J. M. Envir. Sci. Technol. 16, 639–645 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Butcher, S. S. & Sorenson, E. M. J. Air Pollut. Control Ass. 29, 724–728 (1979).

    Article  CAS  Google Scholar 

  7. Cooper, J. A. J. Air Pollut. Control Ass. 30, 855–861 (1980).

    Article  CAS  Google Scholar 

  8. Rudling, L., Ahling, B. & Löfroth, G. in Residential Solid Fuels (eds Cooper, J. A. & Malek, D.) 34–53 (Oregon Graduate Center, Beaverton, 1982).

    Google Scholar 

  9. Alsberg, T. & Stenberg, U. Chemosphere 8, 487–496 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Lee, M. L., Prado, G. P., Howard, J. B. & Hites, R. A. Biomed. Mass Spectrom. 4, 182–186 (1977).

    Article  CAS  Google Scholar 

  11. Ramdahl, T., Alfheim, I., Rustad, S. & Olsen, T. Chemosphere 11, 601–611 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Ramdahl, T. & Møller, M. Chemosphere 12, 23–34 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Grimmer, G., Jacob, J., Naujack, K.-W. & Dettbam, G. Analyt. Chem. 55, 892–900 (1983).

    Article  CAS  Google Scholar 

  14. Grimmer, G., Böhnke, H. & Glaser, A. Erdöl Kohle, Erdgas, Petrochem. 30, 411–417 (1977).

    CAS  Google Scholar 

  15. Eglinton, G. & Murphy, M. T. J. (eds) Organic Geochemistry (Springer, New York, 1969).

  16. Albrecht, P. & Ourisson, G. Angew. Chem. 10, 209–225 (1971).

    Article  CAS  Google Scholar 

  17. Pillinger, C. T. & Eglinton, G. Quat. Rev. 25, 571–628 (1971).

    Google Scholar 

  18. Ramdahl, T. & Becher, G. Analyt. chim. Acta 144, 83–91 (1982).

    Article  CAS  Google Scholar 

  19. Prakash, C. B. & Murray, F. E. Combust. Sci. Technol. 6, 81–88 (1972).

    Article  CAS  Google Scholar 

  20. Pereira, W. E., Rostad, C. E., Taylor, H. E. & Klein, J. M. Envir. Sci. Technol. 16, 387–396 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Simoneit, B. R. T. & Mazurek, M. A. Atmos. Envir. 16, 2139–2159 (1982).

    Article  CAS  Google Scholar 

  22. Youngblood, W. W. & Blumer, M. Geochim. cosmochim. Acta 39, 1303–1314 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Grimmer, G., Naujak, K.-W. & Schneider, D. Z. Analyt. Chem. 311, 475–484 (1982).

    CAS  Google Scholar 

  24. Simoneit, B. R. T. Geochim. cosmochim. Acta 41, 463–476 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Wakeham, S. G., Schaffner, C. & Giger, W. Geochim. cosmochim. Acta 44, 415–429 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Laflamme, R. E. & Hites, R. A. Geochim. cosmochim. Acta 42, 289–303 (1978).

    Article  ADS  CAS  Google Scholar 

  27. Bjørseth, A. Analyt. chim. Acta 94, 21–27 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramdahl, T. Retene—a molecular marker of wood combustion in ambient air. Nature 306, 580–582 (1983). https://doi.org/10.1038/306580a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306580a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing