Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unequal crossing-over accounts for the organization of Drosophila virilis rDNA insertions and the integrity of flanking 28S gene

Abstract

The majority of ribosomal DNA (rDNA) repeats in Drosophila melanogaster and Drosophila virilis have an insertion in the 28S rRNA coding region, and such repeats are essentially inactive in transcription1. There are two unrelated types of insertion in D. melanogaster rDNA, one of which (type 1) has some homology with insertions in D. virilis2, and is located in precisely the same position as that in the D. virilis rDNA3–6. D. melanogaster type 1 rDNA insertions fall into three size classes of 5, 1, 0.5 kilobases (kb), and sequences of shorter insertions comprise the downstream end of longer ones4,5. Indeed, the points at which the sequences of longer type 1 insertions depart from shorter ones are oligonucleotides that are closely related to a 14-base pair (bp) rRNA coding sequence directly repeated at the flanks of D. virilis3 and some D. melanogaster4 rDNA insertions. It has been suggested that shorter D. melanogaster type 1 insertions derived from longer ones by unequal crossing-over that involved these homologies5, and I show here that long D. virilis rDNA insertions may have arisen from shorter ones in the same way. Also, I suggest that such unequal crossing-over can generate intact rDNA repeats from those with insertions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Long, E. O. & Dawid, I. B. A. Rev. Biochem. 49, 727–764 (1980).

    Article  CAS  Google Scholar 

  2. Barnett, T. & Rae, P. M. M. Cell 16, 763–775 (1979).

    Article  CAS  Google Scholar 

  3. Rae, P. M. M., Kohorn, B. D. & Wade, R. P. Nucleic Acids Res. 8, 3491–3504 (1980).

    Article  CAS  Google Scholar 

  4. Dawid, I. B. & Rebbert, M. L. Nucleic Acids Res. 9 5011–5020 (1981).

    Article  CAS  Google Scholar 

  5. Rae, P. M. M. Nucleic Acids Res. 9, 4997–5010 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Roiha, H., Miller, J. R., Woods, L. C. & Glover, D. M. Nature 290, 749–753 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Rae, P. M. M. & Steele, R. E. Nucleic Acids Res. 6 2987–2995 (1979).

    Article  CAS  Google Scholar 

  8. Rae, P. M. M., Barnett, T. & Murtif, V. M. Chromosoma 82, 637–655 (1981).

    Article  CAS  Google Scholar 

  9. Long, E. O. & Dawid, I. B. Cell 18, 1185–1196 (1979).

    Article  CAS  Google Scholar 

  10. Schalet, A. Genetics 63, 133–153 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Petes, T. D. Cell 19, 765–774 (1980).

    Article  CAS  Google Scholar 

  12. Edlund, T. & Normark, S. Nature 292, 269–271 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–530 (1980).

    Article  CAS  Google Scholar 

  14. Smith, M. et al. Cell 16, 753–761 (1979).

    Article  CAS  Google Scholar 

  15. Tu, C.-P. D. & Cohen, S. N. Gene 10, 177–183 (1980).

    Article  CAS  Google Scholar 

  16. DeWet, J. R. et al. J. Virol. 33, 401–410 (1980).

    CAS  Google Scholar 

  17. Wahl, G. M., Stern, M. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 76, 3683–3687 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rae, P. Unequal crossing-over accounts for the organization of Drosophila virilis rDNA insertions and the integrity of flanking 28S gene. Nature 296, 579–581 (1982). https://doi.org/10.1038/296579a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296579a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing