Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding

An Erratum to this article was published on 01 February 1999

Abstract

Two models are being considered for the mechanism of chaperonin-assisted protein folding in E. coli: (i) GroEL/GroES act primarily by enclosing substrate polypeptide in a folding cage in which aggregation is prevented during folding. (ii) GroEL mediates the repetitive unfolding of misfolded polypeptides, returning them onto a productive folding track. Both models are not mutually exclusive, but studies with the polypeptide-binding domain of GroEL have suggested that unfolding is the primary mechanism, enclosure being unnecessary. Here we investigate the capacity of the isolated apical polypeptide-binding domain to functionally replace the complete GroEL/GroES system. We show that the apical domain binds aggregation-sensitive polypeptides but cannot significantly assist their refolding in vitro and fails to replace the groEL gene or to complement defects of groEL mutants in vivo. A single-ring version of GroEL cannot substitute for GroEL. These results strongly support the view that sequestration of aggregation-prone intermediates in a folding cage is an important element of the chaperonin mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Ribbon diagram of the structure of a GroEL subunit (PDB file 1DER of NCBI)59 highlighting the apical, intermediate and equatorial domains.
Figure 2: Characterization of the apical domain, EL191–376, and of the domain fragment, N-His-EL193–334, by CD spectroscopy.
Figure 3: Interaction of apical domain proteins with unfolded rhodanese and DHFR.
Figure 4: Refolding of rhodanese, mMDH and CS in vitro in the presence of GroEL and apical domain proteins.
Figure 5: Effect of apical domain proteins on rhodanese reactivation by GroEL/GroES.
Figure 6: Rhodanese folding within the GroES-enclosed cavity of GroEL and GroEL-SR1.

Similar content being viewed by others

References

  1. Georgopoulos, C. & Welch, W.J. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9, 601–634 ( 1993).

    Article  CAS  Google Scholar 

  2. Ellis, R.J. Roles of molecular chaperones in protein folding. Curr. Opin. Struct. Biol. 4, 117–122( 1994).

    Article  CAS  Google Scholar 

  3. Hartl, F.U. Molecular chaperones in cellular protein folding. Nature 381, 571–580 (1996).

    Article  CAS  Google Scholar 

  4. Fenton, W.A. & Horwich, A.L. GroEL-mediated protein folding. Prot. Sci. 6, 743–760 (1997).

    Article  CAS  Google Scholar 

  5. Fayet, O., Ziegelhoffer, T. & Georgopoulos, C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171, 1379– 1385 (1989).

    Article  CAS  Google Scholar 

  6. Horwich, A.L., Low, K.B., Fenton, W.A., Hirshfield, I.N. & Furtak, K. Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74, 909– 917 (1993).

    Article  CAS  Google Scholar 

  7. Ewalt, K.L., Hendrick, J.P., Houry, W.A. & Hartl, F.U. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90, 491–500 (1997).

    Article  CAS  Google Scholar 

  8. Braig, K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371, 578– 586 (1994).

    Article  CAS  Google Scholar 

  9. Fenton, W.A., Kashi, Y., Furtak, K. & Horwich, A.L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614–619 ( 1994).

    Article  CAS  Google Scholar 

  10. Chen, S. et al. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature 371, 261–264 (1994).

    Article  CAS  Google Scholar 

  11. Mayhew, M. et al. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379, 420– 426(1996).

    Article  CAS  Google Scholar 

  12. Roseman, A.M., Chen, S., White, H., Braig, K. & Saibil, H.R. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87, 241–251(1997).

    Article  Google Scholar 

  13. Xu, Z., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741– 749 (1997).

    Article  CAS  Google Scholar 

  14. Langer, T., Pfeifer, G., Martin, J., Baumeister, W. & Hartl, F.U. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 11, 4757– 4765 (1992).

    Article  CAS  Google Scholar 

  15. Saibil, H.R. et al. ATP induces large quarternary rearrangements in a cage-like chaperonin structure. Curr. Biol. 3, 265 –273 (1993).

    Article  CAS  Google Scholar 

  16. Martin, J. et al. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature 352, 36–42 (1991).

    Article  CAS  Google Scholar 

  17. Martin, J., Mayhew, M., Langer, T. & Hartl, F.U. The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Nature 366, 228–233( 1993).

    Article  CAS  Google Scholar 

  18. Todd, M.J., Viitanen, P.V. & Lorimer, G.H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265, 659–666 (1994).

    Article  CAS  Google Scholar 

  19. Hayer-Hartl, M.K., Martin, J. & Hartl, F.U. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science 269, 836–841(1995).

    Article  CAS  Google Scholar 

  20. Weissman, J.S. et al. Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under GroES. Cell 83, 577–587 (1995).

    Article  CAS  Google Scholar 

  21. Weissman, J.S., Rye, H.S., Fenton, W.A., Beechem, J.M. & Horwich, A.L. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84, 481– 490 (1996).

    Article  CAS  Google Scholar 

  22. Hayer-Hartl, M.K., Weber, F. & Hartl, F.U. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis. EMBO J. 15, 6111–6121 (1996).

    Article  CAS  Google Scholar 

  23. Rye, H.S. et al. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388, 792 –798 (1997).

    Article  CAS  Google Scholar 

  24. Coyle, J.E., Jaeger, J., Gross, M., Robinson, C.V. & Radford, S.E. Structural and mechanistic consequences of polypeptide binding by GroEL. Folding & Design 2, R93–R104 (1997).

    Article  CAS  Google Scholar 

  25. Horovitz, A. Structural aspects of GroEL function. Curr. Opin. Struct. Biol. 8, 93–100 ( 1998).

    Article  CAS  Google Scholar 

  26. Zahn, R., Perrett, S., Stenberg, G. & Fersht, A.R. Catalysis of amide proton exchange by the molecular chaperones GroEL and SecB. Science 271, 642–645 (1996).

    Article  CAS  Google Scholar 

  27. Zahn, R., Perrett, S., Sternberg, G. & Fersht, A.R. Conformational states bound by the molecular chaperones GroEL and SecB: a hidden unfolding (annealing) activity. J. Mol. Biol. 261, 43–61 (1996).

    Article  CAS  Google Scholar 

  28. Nieba-Axmann, S.E., Ottiger, M., Wüthrich, K. & Plückthun, A. Multiple cycles of global unfolding of GroEL-bound cyclophilin as evidenced by NMR. J. Mol. Biol. 271, 803– 818 (1997).

    Article  CAS  Google Scholar 

  29. Todd, M.J., Lorimer, G.H. & Thirumalai, D. Chaperonin-facilitated protein folding: Optimization of rate and yield by an iterative annealing mechanism. Proc. Natl. Acad. Sci. USA 93, 4030–4035 (1996).

    Article  CAS  Google Scholar 

  30. Robinson, C.V. et al. Conformation of GroEL-bound alpha-lactalbumin probed by mass spectrometry. Nature 372, 646– 651 (1994).

    Article  CAS  Google Scholar 

  31. Groß, M., Robinson, C.V., Mayhew, M., Hartl, F.U. & Radford, S.E. Significant hydrogen exchange protection in GroEL-bound DHFR is maintained during iterative rounds of substrate cycling. Prot. Sci. 5, 2505– 2513 (1996).

    Article  Google Scholar 

  32. Gervasoni, P., Staudenmann, W., James, P., Gehrtig, P. & Plückthun, A. ß-lactamase binds to GroEL in a conformation highly protected against hydrogen/deuterium exchange. Proc. Natl. Acad. Sci. USA 93, 12189– 12194 (1996).

    Article  CAS  Google Scholar 

  33. Goldberg, M.S. et al. Native-like structure of a protein folding intermediate bound to the chaperonin GroEL. Proc. Natl. Acad. Sci. USA 94, 1080–1085 (1997).

    Article  CAS  Google Scholar 

  34. Walter, S., Lorimer, G.H. & Schmid, F.X. A thermodynamic coupling mechanism for GroEL-mediated unfolding. Proc. Natl. Acad. Sci. USA 93, 9425–9430 (1996).

    Article  CAS  Google Scholar 

  35. Zahn, R. et al. Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proc. Natl. Acad. Sci. USA 93, 15024–15029 (1996).

    Article  CAS  Google Scholar 

  36. Buckle, A.M., Zahn, R. & Fersht, A.R. A structural model for GroEL-polypeptide recognition. Proc. Natl. Acad. Sci. USA 94, 3571– 3575 (1997).

    Article  CAS  Google Scholar 

  37. Hlodan, R., Tempst, P. & Hartl, F.U. Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding. Nature Struct Biol. 2, 587–595 (1995).

    Article  CAS  Google Scholar 

  38. Mendoza, J.A., Rogers, E., Lorimer, G.H. & Horowitz, P.M. Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J. Biol. Chem. 266, 13044– 13049 (1991).

    CAS  PubMed  Google Scholar 

  39. Buchner, J. et al. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586– 1591 (1991).

    Article  CAS  Google Scholar 

  40. Ranson, N.A., Dunster, N.J., Burston, S.G. & Clarke, A.R. Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds. J. Mol. Biol. 250, 581– 586 (1995).

    Article  CAS  Google Scholar 

  41. Ellis, R.J. Molecular chaperones. Opening and closing the Anfinsen cage. Curr. Biol. 4, 633–635 ( 1994).

    Article  CAS  Google Scholar 

  42. Weissman, J.S., Kashi, Y., Fenton, W.A. & Horwich, A.L. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78, 693–702 (1994).

    Article  CAS  Google Scholar 

  43. Georgopoulos, C., Hendrix, R.W., Casjens, S.R. & Kaiser, A.D. Host participation in bacteriophage lambda head assembly. J. Mol. Biol. 76, 45–60 ( 1973).

    Article  CAS  Google Scholar 

  44. Georgopoulos, C., Hendrix, R.W., Kaiser, A.D. & Wood, W.B. Role of the host cell in bacteriophage morphogenesis: Effects of a bacterial mutation on T4 head assembly. Nature New Biol. 239, 38–41 (1972).

    Article  CAS  Google Scholar 

  45. Bukau, B. & Horwich, A.L. The Hsp70 and Hsp60 Chaperone Machines. Cell 92, 351– 366 (1998).

    Article  CAS  Google Scholar 

  46. Netzer, W.J. & Hartl, F.U. Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. Trend. Biochem. Sci. 23, 68–73 ( 1998).

    Article  CAS  Google Scholar 

  47. Klumpp, M., Baumeister, W. & Essen, L.-O. Structure of the substrate binding domain of the thermosome, an Archaeal Group II chaperonin. Cell 91 , 263–270 (1997).

    Article  CAS  Google Scholar 

  48. Ditzel, L. et al. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93, 125– 138 (1998).

    Article  CAS  Google Scholar 

  49. Altamirano, M.M., Golbik, R., Zahn, R., Buckle, A.M. & Fersht, A.R. Refolding chromatography with immobilized mini-chaperones. Proc. Natl. Acad. Sci. USA 94, 3576– 3578 (1997).

    Article  CAS  Google Scholar 

  50. Schoepfer, R. The pRSET family of T7 promoter expression vectors for Escherichia coli. Gene 124, 83–85 ( 1993).

    Article  CAS  Google Scholar 

  51. Clark, A.C., Hugo, E. & Frieden, C. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL. Biochemistry 35, 5893–5901 ( 1996).

    Article  CAS  Google Scholar 

  52. Pace, C.N.V., Felix; Fee, Lanette; Grimsley, Gerald and Gray, Theronica. How to measure and predict the molar absorption coefficient of a protein. Prot. Sci. 4, 2411–2423 ( 1995).

    Article  CAS  Google Scholar 

  53. Tandon, S. & Horowitz, P.M. Detergent-assisted refolding of gunanidinium chloride-denatured rhodanese. J. Biol. Chem. 261, 15615–15681 (1986).

    CAS  PubMed  Google Scholar 

  54. Zhi, W., Landry, S.J., Gierasch, L.M. & Srere, P.A. Renaturation of citrate synthase: Influence of denaturant and folding assistants. Prot. Sci. 1, 522–529 (1992).

    Article  CAS  Google Scholar 

  55. Zeilstra, R.J., Fayet, O., Baird, L. & Georgopoulos, C. Sequence analysis and phenotypic characterization of groEL mutations that block lambda and T4 bacteriophage growth. J Bacteriol. 175, 1134–1143 (1993).

    Article  Google Scholar 

  56. Mayer, M.P. A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163, 41–46 (1995).

    Article  CAS  Google Scholar 

  57. Ang, D. & Georgopoulos, C. The GrpE heat shock protein is essential for Escherichia coli viability at all temperatures but is dispensable in certain mutant backgrounds. J. Bacteriol. 171, 2748–2755 (1989).

    Article  CAS  Google Scholar 

  58. Casadaban, M.J. & Cohen, S.N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138, 179–207 (1980).

    Article  CAS  Google Scholar 

  59. Boisvert, D.C., Wang, J., Otwinowski, Z., Horwich, A.L. & Sigler, P.B. The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATPγS. Nature Struct. Biol. 3, 170–177 ( 1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Moroder and E. Weyher-Stingl (Martinsried, FRG) for their help with the CD measurements, and S. Radford (Leeds, UK) for stimulating discussion. We thank A. Fersht for suggesting the construction of the apical domain fragment lacking helices H11 and H12. This work was supported in part by Swiss National Fund. F.W. is a fellow of the German National Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ulrich Hartl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, F., Keppel, F., Georgopoulos, C. et al. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding. Nat Struct Mol Biol 5, 977–985 (1998). https://doi.org/10.1038/2952

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2952

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing