Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Properties of postsynaptic channels induced by acetylcholine in different frog muscle fibres

Abstract

Skeletal muscles in the frog are composed of two distinct classes of muscle fibre: fast muscle fibres capable of propagating action potentials and twitches, and slow muscle fibres normally unable to generate action potentials or twitches1,2. In addition, amphibian muscles contain a spectrum of ‘intermediate’ fibres whose structural and functional properties lie between those of fast and slow fibres3–6. Much is now known about the characteristics of the channels opened by the transmitter acetylcholine (ACh) acting on the membrane of fast fibres7,8, but the molecular action of ACh on the other fibre types is only poorly understood. We report here the existence of a muscle in the mandibular arch of the frog in which most, if not all, the fibres are multiply innervated and are capable of eliciting action potentials. We also report that the channels induced by the transmitter on the synaptic membrane of fast, slow and submaxillaris muscle fibres differ in their lifetimes and conductances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Taski, I. & Mizutani, K. Jap. J. med. Sci. Biol. 10, 237–244 (1944).

    Google Scholar 

  2. Kuffler, S. W. & Vaughan Williams, E. M. J. Physiol., Lond. 121, 289–317 (1953).

    Article  CAS  Google Scholar 

  3. Smith, R. S. & Ovalle, W. K. J. Anat. 116, 1–24 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lännergren, J. Nature. 279, 254–256 (1979).

    Article  ADS  Google Scholar 

  5. Kordylewski, L. Z. mikrosk-anat. Forsch. 93, 225–243 (1979).

    CAS  PubMed  Google Scholar 

  6. Kordylewski, L. Z. mikrosk-anat. Forsch. 93, 1038–1050 (1979).

    CAS  PubMed  Google Scholar 

  7. Katz, B. & Miledi, R. J. Physiol., Lond. 224, 665–700 (1972).

    Article  CAS  Google Scholar 

  8. Anderson, C. R. & Stevens, C. F. J. Physiol., Lond. 235, 655–692 (1973).

    Article  CAS  Google Scholar 

  9. Ecker, A. & Wiedersheim, R. Anatomie des Frosches (Braunschweig, Vieweg, 1896).

    Google Scholar 

  10. Stefani, E. & Steinbach, A. B. J. Physiol., Lond. 203, 383–401 (1969).

    Article  CAS  Google Scholar 

  11. Burke, W. & Ginsborg, B. L. J. Physiol., Lond. 132, 587–598 (1956).

    Google Scholar 

  12. Katz, B. & Miledi, R. Proc. R. Soc. B161, 496–503 (1965).

    ADS  CAS  Google Scholar 

  13. Katz, B. & Miledi, R. J. Physiol., Lond. 181, 656–670 (1965).

    Article  CAS  Google Scholar 

  14. Dionne, V. E. & Parsons, R. L. Nature 274, 902–904 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Magazanik, L. G., Fedrov, V. V. & Snetkov, V. A. Prog. Brain Res. 49, 225–240 (1979).

    Article  CAS  Google Scholar 

  16. Kordǎs, M. J. Physiol., Lond. 204, 493–502 (1969).

    Article  Google Scholar 

  17. Katz, B. & Miledi, R. J. Physiol., Lond. 231, 549–574 (1973).

    Article  CAS  Google Scholar 

  18. Miledi, R. J. Physiol., Lond. 151, 1–23 (1960).

    Article  CAS  Google Scholar 

  19. Elul, R., Miledi, R. & Stefani, E. Acta physiol. latinoam. 20, 194–226 (1970).

    CAS  Google Scholar 

  20. Miledi, R., Stefani, E. & Steinbach, A. B. J. Physiol., Lond. 217, 737–754 (1971).

    Article  CAS  Google Scholar 

  21. Uchitel, O. D. Acta physiol. latinoam. 25, 462–466 (1975).

    CAS  Google Scholar 

  22. Schmidt, H. in Plasticity of Muscle (ed. Pette, D.) (de Gruyter, Berlin, (1980).

    Google Scholar 

  23. Cordoba, F. et al. J. Physiol., Lond. 291, 73P (1979).

    CAS  PubMed  Google Scholar 

  24. Pearse, A. G. Histochemistry, Theoretical and Applied (Churchill Livingstone, London, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miledi, R., Uchitel, O. Properties of postsynaptic channels induced by acetylcholine in different frog muscle fibres. Nature 291, 162–165 (1981). https://doi.org/10.1038/291162a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291162a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing