Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Correlation of DNA exonic regions with protein structural units in haemoglobin

Abstract

The discovery of intervening sequences (introns) in DNA led Gilbert and Tonegawa1,2 to suggest that a new protein could have been produced by bringing together certain segments of pre-existing ones. However, Blake3 argued that if DNA was so organized that coding sequences (exons) correspond to structural as well as functional units of proteins, then combinations would be much more likely to yield a stable globular conformation through being ‘sums of parts’. In immunoglobulin heavy chain, four separate exons encode four different units4, all with distinct functions and three of which have clear domain structures. However, in haemoglobin, which has no obvious domain structure, no clear conformational characteristics have so far been recognized for the segments encoded by exons. From a close inspection of their conformations by drawing various stereodiagrams and the Cα–Cα distance map, I now propose a conformational characterization of the segments as structural units.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gilbert, W. Nature 271, 501 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Tonegawa, S., Maxam, A. M., Tizard, R., Bernard, O. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 75, 1485–1489 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Blake, C. C. F. Nature 273, 267 (1978).

    Article  ADS  Google Scholar 

  4. Sakano, H. et al. Nature 277, 627–633 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Leder, A. et al. Proc. natn. Acad. Sci. U.S.A. 75, 6187–6191 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Nishioka, Y. & Leder, P. Cell 18, 875–882 (1979).

    Article  CAS  Google Scholar 

  7. Konkel, D. A., Tilghman, S. M. & Leder, P. Cell 15, 1125–1132 (1978).

    Article  CAS  Google Scholar 

  8. Konkel, D. A., Maizel, J. V. Jr & Leder, P. Cell 18, 865–873 (1979).

    Article  CAS  Google Scholar 

  9. Craik, C. S., Buchman, S. R. & Beychok, S. Proc. natn. Acad. Sci. U.S.A. 77, 1384–1388 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Eaton, W. A. Nature 284, 183–185 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Rao, S. T. & Rossmann, M. G. J. molec. Biol. 76, 241–246 (1973).

    Article  CAS  Google Scholar 

  12. Wetlaufer, D. B. Proc. natn. Acad. Sci. U.S.A. 70, 697–701 (1973).

    Article  ADS  CAS  Google Scholar 

  13. Rossmann, M. G. & Liljas, A. J. molec. Biol. 85, 177–181 (1974).

    Article  Google Scholar 

  14. Gō, M. & Miyazawa, S. Int. J. Peptide Protein Res. 15, 211–224 (1980).

    Article  Google Scholar 

  15. Nishikawa, K., Ooi, T., Isogai, Y. & Saito, N. J. phys. Soc. Japan 32, 1331–1337 (1974).

    Article  ADS  Google Scholar 

  16. Kuntz, I. D. J. Am. chem. Soc. 97, 4362–4366 (1975).

    Article  CAS  Google Scholar 

  17. Jung, A., Sippel, A. E., Grez, M. & Schütz, G. Proc. natn. Acad. Sci. U.S.A. 77, 5759–5763 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Anfinsen, C. B. & Scheraga, H. A. Adv. Protein Chem. 29, 205–300 (1975).

    Article  CAS  Google Scholar 

  19. Doolittle, W. F. Nature 272, 581–582 (1978).

    Article  ADS  Google Scholar 

  20. Perutz, M. F., Muirhead, H., Cox, J. M. & Goaman, L. C. G. Nature 219, 131–139 (1968).

    Article  ADS  CAS  Google Scholar 

  21. Dayhoff, M. O., Hunt, L. T., McLaughlin, P. J. & Barker, W. C. Atlas of Protein Sequence and Structure Vol. 5 (ed. Dayhoff, M. O.) D370–D371 (National Biomedical Foundation, Maryland, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gō, M. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature 291, 90–92 (1981). https://doi.org/10.1038/291090a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291090a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing