Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nitric oxide functions as a signal in plant disease resistance

Abstract

Recognition of an avirulent pathogen triggers the rapid production of the reactive oxygen intermediates superoxide (O2) and hydrogen peroxide (H2O2)1. This oxidative burst drives cross-linking of the cell wall2, induces several plant genes involved in cellular protection and defence3,4, and is necessary for the initiation of host cell death in the hypersensitive disease-resistance response1,3. However, this burst is not enough to support a strong disease-resistance response4,5. Here we show that nitric oxide, which acts as a signal in the immune, nervous and vascular systems6, potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen intermediates and functions independently of such intermediates to induce genes for the synthesis of protective natural products. Moreover, inhibitors of nitric oxide synthesis compromise the hypersensitive disease-resistance response of Arabidopsis leaves to Pseudomonas syringae, promoting disease and bacterial growth. We conclude that nitric oxide plays a key role in disease resistance in plants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Function of NO in the induction of hypersensitive cell death in soybean cell suspension cultures.
Figure 2: NO production in soybean cell suspensions.
Figure 3: NO induction of pal.
Figure 4: Function of NO in the hypersensitive disease-resistance response: effects of L-NNA and PBITU on: a, b, visible symptoms, and c, bacterial growth.

Similar content being viewed by others

References

  1. Lamb, C. & Dixon, R. A. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 48, 251–275 (1997).

    Article  CAS  Google Scholar 

  2. Bradley, D. J., Kjellbom, P. & Lamb, C. J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: A novel, rapid defense response. Cell 70, 21–30 (1992).

    Article  CAS  Google Scholar 

  3. Levine, A., Tenhaken, R., Dixon, R. A. & Lamb, C. H2O2from the oxidative burst orchestrates the plant hypersensitive response. Cell 79, 583–593 (1994).

    Article  CAS  Google Scholar 

  4. Jabs, T., Tschöpe, M., Colling, C., Hahlbrock, K. & Scheel, D. Elicitor-stimulated ion fluxes and O2 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl Acad. Sci. USA 94, 4800–4805 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Glazener, J. A., Orlandi, E. W. & Baker, J. C. The active oxygen response of cell suspensions is not sufficient to cause hypersensitive cell death. Plant Physiol. 110, 759–763 (1996).

    Article  CAS  Google Scholar 

  6. Schmidt, H. H. H. W. & Walter, U. NO at work. Cell 78, 919–925 (1994).

    Article  CAS  Google Scholar 

  7. Shirasu, K., Nakajima, H., Rajasekhar, V. K., Dixon, R. A. & Lamb, C. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9, 261–270 (1997).

    Article  CAS  Google Scholar 

  8. Nathan, C. Natural resistance and nitric oxide. Cell 82, 873–876 (1995).

    Article  CAS  Google Scholar 

  9. Chandra, S., Martin, G. B. & Low, P. S. The Pto kinase mediates a signaling pathway leading to the oxidative burst in tomato. Proc. Natl Acad. Sci. USA 93, 13393–13397 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Guo, Z.-J. & Ohta, Y. Effect of ethylene biosynthesis on the accumulation of 6-methoxymellein induced by elicitors in carrot cells. J. Plant Physiol. 144, 700–704 (1994).

    Article  CAS  Google Scholar 

  11. Yahraus, T., Chandra, S., Legendre, L. & Low, P. S. Evidence for a mechanically induced oxidative burst. Plant Physiol. 109, 1259–1266 (1995).

    Article  CAS  Google Scholar 

  12. Murphy, M. E. & Noack, E. Nitric oxide assay using hemoglobin method. Meth. Enzymol. 233, 241–250 (1994).

    Google Scholar 

  13. Cueto, M. et al. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398, 159–164 (1996).

    Article  CAS  Google Scholar 

  14. Ninnemann, H. & Maier, J. Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa. Photochem. Photobiol. 64, 393–398 (1996).

    Article  CAS  Google Scholar 

  15. Griffith, O. W. & Stuehr, D. J. Nitric oxide synthases: Properties and catalytic mechanism. Annu. Rev. Physiol. 57, 707–736 (1995).

    Article  CAS  Google Scholar 

  16. Garvey, E. P. et al. Potent and selective inhibition of human nitric oxide synthases. J. Biol. Chem. 269, 26669–26676 (1994).

    CAS  PubMed  Google Scholar 

  17. Dixon, R. A. & Paiva, N. Stress-induced phenylpropanoid metabolism. Plant Cell 7, 1085–1097 (1995).

    Article  CAS  Google Scholar 

  18. Debener, T., Lehnackers, H., Arnold, M. & Dangl, J. L. Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. Plant J. 1, 289–302 (1991).

    Article  Google Scholar 

  19. Bowler, C., Neuhaus, G., Yamagata, H. & Chua, N.-H. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77, 73–81 (1994).

    Article  CAS  Google Scholar 

  20. Noritake, T., Kawakita, K. & Doke, N. Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant Cell Physiol. 37, 113–116 (1996).

    Article  CAS  Google Scholar 

  21. Levine, A., Pennell, R. I., Alvarez, M. E., Palmer, R. & Lamb, C. Calcium-stimulated apoptosis in a plant hypersensitive disease resistance response. Curr. Biol. 6, 427–437 (1996).

    Article  CAS  Google Scholar 

  22. Berridge, M. J. Atale of two messengers. Nature 365, 388–389 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Groom, Q. J. et al. rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J. 10, 515–522 (1996).

    Article  CAS  Google Scholar 

  24. Keller, T. et al. Aplant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+-binding domains. Plant Cell 10, 255–266 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jaffrey, S. R. & Snyder, S. H. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science 274, 774–777 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Keen, N. T. & Buzzell, R. I. New disease resistance genes in soybean against Pseudomonas syringae pv. glycinea: Evidence that one of them interacts with a bacterial elicitor. Theor. Appl. Genet. 81, 133–138 (1991).

    Article  CAS  Google Scholar 

  27. Cameron, R. K., Dixon, R. A. & Lamb, C. J. Biologically induced systemic acquired resistance in Arabidopsis thaliana. Plant J. 5, 715–725 (1994).

    Article  Google Scholar 

  28. Hevel, J. M. & Marletta, M. A. Nitric oxide synthase assays. Meth. Enzymol. 23, 251–258 (1994).

    Google Scholar 

  29. Durner, J., Wendehenne, D. & Klessig, D. F. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP ribose. Proc. Natl Acad. Sci. USA(in the press).

Download references

Acknowledgements

Y.X. is a Noble/Salk postdoctoral fellow. This research was supported by grants to M.D. and C.L. from the Italian National Research Council and the Noble Foundation, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Lamb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delledonne, M., Xia, Y., Dixon, R. et al. Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585–588 (1998). https://doi.org/10.1038/29087

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29087

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing