Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Theory agrees with experimental thermal denaturation of short DNA restriction fragments

Abstract

Experimental melting transitions of several natural DNAs of known nucleotide sequences have recently been obtained. The differential melting curves of these DNAs—φX174 DNA1–3, fd DNA4 and SV40 DNA5—all show distinctive sets of peaks or fine structure. Theoretical melting curves calculated from the sequences and a few a priori parameters have not accurately predicted the experimental transitions2,6,7. Although calculated fine structure resembled experimental curves in some cases, the characteristic features of a DNA's differential melting curve could not generally be produced. Azbel8,9 and Gabbarro-Arpa et al.5 have recently obtained good agreement between calculated and experimental curves using a different theoretical approach—only ground-state configurations of DNA were considered for temperatures inside the transition region. Their results suggest that the basic model of DNA melting, common to all theoretical approaches, is accurate. We have used here an exact theoretical approach to calculate melting curves of four DNA restriction fragments of 95–301 base pairs containing the lactose promoter region (Fig. 1). Theoretical curves agree very well with the experimental transitions published by Hardies et al.10 and obtained in this laboratory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lyubchenko, Y. L., Vologodskii, A. V. & Frank-Kamenetskii, M. D. Nature 271, 28–31 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Vizard, D. L., White, R. A. & Ansevin, A. T. Nature 275, 250–251 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Wada, A., Tachibana, H., Ueno, A., Husimi, V. & Machida, Y. Nature 269, 352–353 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Tachibana, H., Wada, A., Gotoh, O. & Takanami, M. Biochim. biophys. Acta 517, 319–328 (1978).

    Article  CAS  Google Scholar 

  5. Gabbarro-Arpa, J., Tougard, P. & Reiss, C. Nature 280, 515–517 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Tong, B. T. & Battersby, S. J. Biopolymers 18, 1917–1936 (1979).

    Article  CAS  Google Scholar 

  7. Ueno, S., Tachibana, H., Husimi, Y. & Wada, A. J. Biochem. 84, 917–924 (1978).

    Article  CAS  Google Scholar 

  8. Azbel, M. Y. Proc. natn. Acad. Sci. U.S.A. 76, 105 (1979).

    Article  ADS  Google Scholar 

  9. Azbel, M. Y. Biopolymers 19, 61–109 (1980).

    Article  CAS  Google Scholar 

  10. Hardies, S. C., Hillen, W., Goodman, T. C. & Wells, R. D. J. biol. Chem. 254, 10128–10134 (1979).

    CAS  PubMed  Google Scholar 

  11. Dickson, R. C., Abelson, J., Barnes, W. M. & Reznikoff, W. S. Science 187, 27–35 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Lyubchenko, Y. L., Frank-Kamenetskii, M. D., Vologodskii, A. V., Luzurkin, Y. & Gause, G. G. Jr Biopolymers 15, 1019–1036 (1976).

    Article  CAS  Google Scholar 

  13. Poland, D. & Scheraga, H. A. Theory of Helix–Coil Transitions in Biopolymers (Academic, New York, 1970).

    Google Scholar 

  14. Wartell, R. M. & Montroll, E. W. Adv. chem. Phys. 22, 129–203 (1972).

    CAS  Google Scholar 

  15. Poland, D. Biopolymers 13, 1859–1871 (1974).

    Article  CAS  Google Scholar 

  16. Applequist, J. & Damle, V. J. chem. Phys. 39, 10 (1963).

    Article  Google Scholar 

  17. Landau, L. D. & Lifshitz, E. M. Statistical Physics (Addison-Wesley, Reading, Massachusetts, 1958).

    MATH  Google Scholar 

  18. Botchan, P. J. molec. Biol. 105, 161 (1976).

    Article  CAS  Google Scholar 

  19. Jones, B. B., Chan, H., Rothstein, S., Wells, R. D. & Reznikoff, W. S. Proc. natn. Acad. Sci. U.S.A. 74, 4914 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Vollenweider, H. J., Fiandt, M. & Szybalski, W. Science 205, 508 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Hardies, S. C. & Wells, R. D. Gene 7, 1–14 (1979).

    Article  CAS  Google Scholar 

  22. Wartell, R. M. & Reznikoff, W. S. Gene (in the press).

  23. Wartell, R. M. Nucleic Acids Res. 4, 2719 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benight, A., Wartell, R. & Howell, D. Theory agrees with experimental thermal denaturation of short DNA restriction fragments. Nature 289, 203–205 (1981). https://doi.org/10.1038/289203a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289203a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing