Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos

Abstract

ALTHOUGH neither X chromosome of preimplantation female mammalian embryos exhibits the two cytological signs of inactivation and dosage compensation—heteropyknosis and late replication1,2—it has not been known whether both X chromosomes actually function during this period. Biochemical evidence based on increasing hypoxanthine-guanine phosphoribosyltransferase (HGPRT) activity during the mouse morula stage indicates that at least one X chromosome is functional3,4. This is corroborated by the observation that mouse embryos lacking an X chromosome do not survive beyond the early cleavage stages5. The principal approach to determining whether both X chromosomes are functional before inactivation has been to look at the distributions of the activities of known X-linked enzymes in individual embryos6,7. A bimodal distribution would be expected if dosage compensation had not yet occurred and female embryos with two X chromosomes made twice as much enzyme as male embryos with only one. However, identities of the embryos being assayed are not known, and conclusions based on activity distributions are necessarily inferential. We have circumvented this difficulty by using a method which facilitates determination of the sex of the embryonic material being assayed. This has led to the demonstration that early male and female mouse blastocysts differ twofold in HGPRT activity, a finding indicative of uncompensated X-chromosome dosage dependent gene activity before X-chromosome inactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mukherjee, A. A. Proc. natn. Acad. Sci. U.S.A. 73, 1608–1611 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Takagi, N. Expl Cell. Res. 86, 127–135 (1974).

    Article  CAS  Google Scholar 

  3. Epstein, C. J. J. biol. Chem. 245, 3289–3294 (1970).

    CAS  PubMed  Google Scholar 

  4. Epstein, C. J. Science 175, 1467–1468 (1972).

    Article  ADS  CAS  Google Scholar 

  5. Tarkowski, A. K. J. Embryol. exp. Morph. 38, 187–202 (1977).

    Google Scholar 

  6. Monk, M. & Kathuria, H. Nature 270, 599–601 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Adler, D. A., West, J. D. & Chapman, V. M. Nature 267, 838–839 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Tarkowski, A. K. Nature 184, 1286–1287 (1959).

    Article  ADS  CAS  Google Scholar 

  9. Kratzer, P. & Gartler, S. M. Nature, 274, 503–504 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Park, W. W. J. Anat. 91, 369–373 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Austen, C. R. in The Sex Chromatin (ed. Moore, K. L.) 241–254 (Saunders, Philadelphia, 1963).

    Google Scholar 

  12. Lyon, M. F. Biol. Rev. 47, 1–35 (1972).

    Article  CAS  Google Scholar 

  13. Gardner, R. L. & Lyon, M. F. Nature 231, 385–386 (1971).

    Article  ADS  CAS  Google Scholar 

  14. Monk, M. in Development in Mammals 3, (ed. Johnson, M. H.) (North-Holland, Amsterdam, 1978).

    Google Scholar 

  15. Martin, G. R. et al. Nature 271, 329–333 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Martin, G. R. Cell 5, 229–243 (1975).

    Article  CAS  Google Scholar 

  17. Martin, G. R., Smith, S. & Epstein, C. J. Devl Biol. (in the press).

  18. Epstein, C. J. Science 163, 1078–1079 (1969).

    Article  ADS  CAS  Google Scholar 

  19. Gartler, S. M. & Andina, R. J. Adv. hum. Genet. 7, 99–140 (1976).

    Article  CAS  Google Scholar 

  20. Migeon, B. R. & Jelalian, K. Nature 269, 242–243 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Lifschytz, E. & Lindsley, D. L. Proc. natn. Acad. Sci. U.S.A. 69, 182–186 (1972).

    Article  ADS  CAS  Google Scholar 

  22. Epstein, C. J., Wegienka, E. & Smith, C. W. Biochem. Genet. 3, 271–281 (1969).

    Article  CAS  Google Scholar 

  23. Golbus, M. S. & Epstein, C. J. Differentiation 2, 143–149 (1974).

    Article  CAS  Google Scholar 

  24. Tarkowski, A. K. Cytogenetics 5, 394–400 (1966).

    Article  Google Scholar 

  25. Buckland, R. A., Evans, H. J. & Sumner, A. T. Expl Cell. Res. 69, 231–236 (1971).

    Article  CAS  Google Scholar 

  26. Randerath, K. Thin Layer Chromatography 2nd edn, 229–234 (Academic, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

EPSTEIN, C., SMITH, S., TRAVIS, B. et al. Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature 274, 500–503 (1978). https://doi.org/10.1038/274500a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274500a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing