Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Use of coupled transcription and translation to study mRNA production by vaccinia cores

Abstract

VACCINIA is a double-stranded DNA virus which replicates in the cytoplasm of animal cells. Soon after infection, the outer layers of the virion are removed to yield core particles1 which make mRNA that is transcribed, capped2 and polyadenylated3 by enzymes present in the cores. Later, the cores break down, DNA synthesis begins, and ‘late’ genes are expressed4. Cores can be made in vitro by treating virions with non-ionic detergent and mercapto-ethanol. When incubated with nucleoside triphosphates, these particles produce mRNA5 which can be translated in cell-free systems to yield authentic vaccinia early proteins3,6,7. It has recently been suggested that this mRNA may be derived from large primary transcripts8 which are processed in a manner similar to that proposed for cellular mRNA9,10. I have obtained evidence that early vaccinia mRNA is made by monocistronic transcription in vitro, by comparing the relative sensitivity of the synthesis of individual messages to ultraviolet irradiation. Production of mRNA was assayed indirectly using a coupled cell-free transcription–translation system in which protein synthesis is dependent on added vaccinia cores.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dales, S. J. Cell Biol. 18, 51–72 (1963).

    Article  CAS  Google Scholar 

  2. Moss, B., Gershowitz, A., Wei, C.-M. & Boone, R. Virology 72, 341–351 (1976).

    Article  CAS  Google Scholar 

  3. Nevins, J. R. & Joklik, W. K. Virology 63, 1–14 (1975).

    Article  CAS  Google Scholar 

  4. Joklik, W. K. A. Rev. Microbiol 22, 359–390 (1968).

    Article  CAS  Google Scholar 

  5. Kates, J. & Beeson, J. J. molec. Biol. 50, 1–18 (1970).

    Article  CAS  Google Scholar 

  6. Fournier, F. et al. FEBS Lett. 30, 268–272 (1973).

    Article  CAS  Google Scholar 

  7. Jaureguiberry, G., Ben-Hamida, F., Chapeville, F. & Beaud, G. J. Virol. 15, 1467–1474 (1975).

    Article  CAS  Google Scholar 

  8. Paoletti, E. J. biol. Chim. 252, 866–871 & 872–877 (1977).

    CAS  Google Scholar 

  9. Lewin, B. Cell 4, 11–20 & 77–93 (1975).

    Article  CAS  Google Scholar 

  10. Molloy, G. R., Jelinek, W., Salditt, M. & Darnell, J. E. Cell 1, 43–53 (1974).

    Article  CAS  Google Scholar 

  11. Michalke, H. & Bremer, H. J. molec. Biol. 41, 1–23 (1969).

    Article  CAS  Google Scholar 

  12. Hercules, K. & Sauerbier, W. J. Virol 12, 872–881 (1973).

    Article  CAS  Google Scholar 

  13. Bräutigam, A. R. & Sauerbier, W. J. Virol. 13, 1110–1117(1974).

    Article  Google Scholar 

  14. Goldberg, S., Weber, J. & Darnell, J. E. Cell 10, 617–621 (1977).

    Article  CAS  Google Scholar 

  15. Ball, L. A. & White, C. N. Proc. natn. Acat. Sci. U.S.A. 73, 442–446 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Abraham, G. & Banerjee, A. K. Proc. natn. Acad. Sci. U.S.A. 73, 1504–1508 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Glazier, K., Raghow, R. & Kingsbury, D. W. J. Virol. 21, 863–871 (1977).

    Article  CAS  Google Scholar 

  18. Pelham, H. R. B. & Jackson, R. J. Eur. J. Biochem. 67, 247–256 (1976).

    Article  CAS  Google Scholar 

  19. O'Farrell, P. H. J. biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Laskey, R. A. & Mills, A. D. Eur. J. Biochem. 56, 335–341 (1975).

    Article  CAS  Google Scholar 

  21. Darnbrough, C. H., Legon, S., Hunt, T. & Jackson, R. J. J. molec. Biol. 76, 379–403 (1973).

    Article  CAS  Google Scholar 

  22. Hunter, A. R., Hunt, T., Jackson, R. J. & Robertson, H. D. J. biol. Chem. 250, 409–417 (1975).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PELHAM, H. Use of coupled transcription and translation to study mRNA production by vaccinia cores. Nature 269, 532–534 (1977). https://doi.org/10.1038/269532a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/269532a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing