Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superoxide dismutase in photosynthetic organisms provides an evolutionary hypothesis

Abstract

Two years ago it seemed that a unifying hypothesis accounting for the distribution of superoxide dismutase (SOD) in different organisms had been achieved. Thus the enzyme was present only in aerobes and aerotolerant anaerobes, but absent from obligate anaerobes1; eukaryotes contained primarily the cuprein (Cu–Zn) type of dismutase (cyanide-sensitive) whereas in prokaryotes the enzyme had either manganese or iron at the catalytic site (cyanide-insensitive); finally, the presence of a manganodismutase in the matrix space of mitochondria was interpreted3 in terms of a polyphyletic origin for eukaryotes with independent evolution of SOD in the prokaryotes (Mn-SOD) and protoeukaryotes (Cu–Zn SOD) before the postulated symbiotic event.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McCord, J. M., Keele, B. B., and Fridovich, I., Proc. natn. Acad. Sci. U.S.A., 68, 1024–1027 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Fridovich, I., Adv. Enzymol., 41, 35–97 (1974).

    CAS  PubMed  Google Scholar 

  3. Fridovich, I., Life Sci., 14, 819–826 (1974).

    Article  CAS  Google Scholar 

  4. Lavelle, F., Durosay, P., and Michelson, A. M., Biochimie, 56, 451–458 (1974).

    Article  CAS  Google Scholar 

  5. Lindmark, D. G., and Müller, M., J. biol. Chem., 249, 4634–4637 (1974).

    CAS  PubMed  Google Scholar 

  6. Puget, K., and Michelson, A. M., Biochem. biophys. Res. Commun., 58, 830–838 (1974).

    Article  CAS  Google Scholar 

  7. Hewitt, J., and Morris, J. G., FEBS Lett., 50, 315–318 (1975).

    Article  CAS  Google Scholar 

  8. Asada, K., Yoshikawa, K., Takahashi, M-A., Maeda, Y., and Enmanji, K., J. biol. Chem., 250, 2801–2807 (1975).

    CAS  PubMed  Google Scholar 

  9. Sawada, Y., Ohyama, T., and Yamazaki, I., Biochim. biophys. Acta, 268, 305–312 (1972).

    Article  CAS  Google Scholar 

  10. Asada, K., Urano, M., and Takahashi, M., Eur. J. Biochem., 36, 257–266 (1973).

    Article  CAS  Google Scholar 

  11. Lumsden, J., and Hall, D. O., Biochem. biophys. Res. Commun., 58, 35–41 (1974).

    Article  CAS  Google Scholar 

  12. Berkner, H. V., and Marshall, L. C., J. Atmos. Sci., 22, 225–261 (1965).

    Article  ADS  CAS  Google Scholar 

  13. Margulis, L., Origin of Eukaryotic Cells (Yale University Press, New Haven, 1970).

    Google Scholar 

  14. Raff, R. A., and Mahler, H. R., Science, 177, 575–582 (1972).

    Article  ADS  CAS  Google Scholar 

  15. Lumsden, J., and Hall, D. O., Biochem. biophys. Res. Commun., 64, 595–602 (1975).

    Article  CAS  Google Scholar 

  16. Hall, J. B., J. theor. Biol., 30, 429–454 (1971).

    Article  CAS  Google Scholar 

  17. Lee, R. E., Nature, 237, 44–46 (1972).

    Article  ADS  Google Scholar 

  18. Schnepf, E., and Brown, R. M., in Cell Differentiation, (edit. by Reinert, J., and Ursprung, M.), 2, 299–322 (Springer, Berlin, 1971).

    Google Scholar 

  19. de Duve, C., Science, 182, 85 (1973).

    Article  ADS  CAS  Google Scholar 

  20. Hall, J. B., J. theor. Biol., 38, 413–418 (1973).

    Article  CAS  Google Scholar 

  21. Weisiger, R. A., and Fridovich, I., J. biol. Chem., 248, 4793–4796 (1973).

    CAS  PubMed  Google Scholar 

  22. Weyl, P. K., Science, 161, 158–160 (1968).

    Article  ADS  CAS  Google Scholar 

  23. Osterberg, R., Nature, 249, 382–383 (1974).

    Article  ADS  CAS  Google Scholar 

  24. Brigelius, R., et al., FEBS Lett., 47, 72–75 (1974).

    Article  CAS  Google Scholar 

  25. Cleveland, L., and Davis, L., Biochim. biophys. Acta, 341, 517–523 (1974).

    Article  CAS  Google Scholar 

  26. Rapp, U., Adams, W. C., and Miller, R. W., Can. J. Biochem., 51, 158–171 (1973).

    Article  CAS  Google Scholar 

  27. Cohen, S. S., Am. Scient., 61, 437–445 (1973).

    ADS  CAS  Google Scholar 

  28. Beauchamp, C., and Fridovich, I., Analyt. Biochem., 44, 276–287 (1971).

    Article  CAS  Google Scholar 

  29. Hayes, M. B., and Wellner, D., J. biol. Chem., 244, 6636–6644 (1969).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LUMSDEN, J., HALL, D. Superoxide dismutase in photosynthetic organisms provides an evolutionary hypothesis. Nature 257, 670–672 (1975). https://doi.org/10.1038/257670a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/257670a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing