Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Decoupling of nucleotide- and microtubule-binding sites in a kinesin mutant

Abstract

Molecular motors require ATP to move along microtubules or actin filaments. To understand how molecular motors function, it is crucial to know how binding of the motor to its filamentous track stimulates the hydrolysis of ATP by the motor, enabling it to move along the filament. A mechanism for the enhanced ATP hydrolysis has not been elucidated, but it is generally accepted that conformational changes in the motor proteins1,2,3 occur when they bind to microtubules or actin filaments, facilitating the release of ADP. Here we report that a mutation in the motor domain of the microtubule motor proteins Kar3 and Ncd uncouples nucleotide- and microtubule-binding by the proteins, preventing activation of the motor ATPase by microtubules. Unlike the wild-type motors, the mutants bind tightly to both ADP and microtubules, indicating that interactions between the nucleotide- and microtubule-binding sites are blocked. The region of the motor that includes the mutated amino acid could transmit or undergo a conformational change required to convert the motor ATPase into a microtubule-stimulated state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microtubule binding by wild-type Kar3 and Kar3-898.
Figure 2: ATP binding and hydrolysis by wild-type Kar3 and Kar3-898.
Figure 3: ATP hydrolysis and mant-ADP release by wild-type Kar3 and Kar3-898.
Figure 4: ATP hydrolysis and mant-ADP release by wild-type Ncd and Ncd-NK.

Similar content being viewed by others

References

  1. Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. Nucleotide-dependent angular change in kinesin motor domain bound to tubulin. Nature 376, 277–279 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Whittaker, M. et al. A35-Å movement of smooth muscle myosin on ADP release. Nature 378, 748–751 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Dominguez, R., Freyzon, Y., Trybus, K. M. & Cohen, C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998).

    Article  CAS  Google Scholar 

  4. Meluh, P. B. & Rose, M. D. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60, 1029–1041 (1990).

    Article  CAS  Google Scholar 

  5. Bascom-Slack, C. A. & Dawson, D. S. The yeast motor protein, Kar3p, is essential for meiosis I. J. Cell Biol. 139, 459–467 (1997).

    Article  CAS  Google Scholar 

  6. Saunders, W., Lengyel, V. & Hoyt, M. A. Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors. Mol. Biol. Cell 8, 1025–1033 (1997).

    Article  CAS  Google Scholar 

  7. Saunders, W. S. & Hoyt, M. A. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70, 451–458 (1992).

    Article  CAS  Google Scholar 

  8. Hoyt, M. A., He, L., Totis, L. & Saunders, W. S. Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 135, 35–44 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Song, H. & Endow, S. A. Rapid purification of microtubule motor domain proteins expressed in bacteria. BioTechniques 22, 82–85 (1997).

    Article  CAS  Google Scholar 

  10. Huang, T.-G. & Hackney, D. D. Drosophila kinesin minimal motor domain expressed in Escherichia coli. J. Biol. Chem. 269, 16493–16501 (1994).

    CAS  PubMed  Google Scholar 

  11. Bloom, G. S. & Endow, S. A. Motor proteins 1: kinesins. Protein Prof. 2, 1109–1171 (1995).

    CAS  Google Scholar 

  12. Chandra, R., Salmon, E. D., Erickson, H. P., Lockhart, A. & Endow, S. A. Structural and functional domains of the Drosophila ncd microtubule motor protein. J. Biol. Chem. 268, 9005–9013 (1993).

    CAS  PubMed  Google Scholar 

  13. Endow, S. A. et al. Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentialy at the minus ends. EMBO J. 13, 2708–2713 (1994).

    Article  CAS  Google Scholar 

  14. Song, H., Golovkin, M., Reddy, A. S. N. & Endow, S. A. In vitro motility of AtKCBP, a calmodulin-binding kinesin protein of Arabidopsis. Proc. Natl Acad. Sci. USA 94, 322–327 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Gulick, A. M., Song, H., Endow, S. A. & Rayment, I. X-ray crystal structure of the yeast Kar3 motor domain complexed with Mg·ADP to 2.3 Å resolution. Biochemistry 37, 1769–1776 (1998).

    Article  CAS  Google Scholar 

  16. Sablin, E. P., Kull, F. J., Cooke, R., Vale, R. D. & Fletterick, R. J. Crystal structure of the motor domain of the kinesin-related motor ncd. Nature 380, 555–559 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Woehlke, G. et al. Microtubule interaction site of the kinesin motor. Cell 90, 207–216 (1997).

    Article  CAS  Google Scholar 

  18. Ruppel, K. M. & Spudich, J. A. Structure-function studies of the myosin motor domain: importance of the 50-kDa cleft. Mol. Biol. Cell 7, 1123–1136 (1996).

    Article  CAS  Google Scholar 

  19. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J. & Vale, R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990).

    Article  CAS  Google Scholar 

  21. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  22. Song, H. & Endow, S. A. Binding sites on microtubules of kinesin motors of the same or opposite polarity. Biochemistry 35, 11203–11209 (1996).

    Article  CAS  Google Scholar 

  23. Moore, J. D., Song, H. & Endow, S. A. Apoint mutation in the microtubule-binding region of the Ncd motor protein reduces motor velocity. EMBO J. 15, 3306–3314 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Hoyt for kar3-898, C. Fierke and K. Hightower for help with fluorometry and the use of a fluorometer, S. Rosenfeld for mant-ATP and A. Gulick for comments on the manuscript. This work was supported by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharyn A. Endow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, H., Endow, S. Decoupling of nucleotide- and microtubule-binding sites in a kinesin mutant. Nature 396, 587–590 (1998). https://doi.org/10.1038/25153

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25153

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing