Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A record of atmospheric halocarbons during the twentieth century from polar firn air

Abstract

Measurements of trace gases in air trapped in polar firn (unconsolidated snow) demonstrate that natural sources of chlorofluorocarbons, halons, persistent chlorocarbon solvents and sulphur hexafluoride to the atmosphere are minimal or non-existent. Atmospheric concentrations of these gases, reconstructed back to the late nineteenth century, are consistent with atmospheric histories derived from anthropogenic emission rates and known atmospheric lifetimes. The measurements confirm the predominance of human activity in the atmospheric budget of organic chlorine, and allow the estimation of atmospheric histories of halogenated gases of combined anthropogenic and natural origin. The pre-twentieth-century burden of methyl chloride was close to that at present, while the burden of methyl bromide was probably over half of today's value.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measured depth profiles of δ15N of N2.
Figure 2: Measured depth profiles of anthropogenic gases with ‘known’ emissions (Tunu, Greenland).
Figure 3: Measured depth profiles of chlorocarbons (Siple Dome, Antarctica).
Figure 4: Measured depth profiles of CH3Br at all three sites.
Figure 5: Histories of CFCs, halons and SF6 in the Southern Hemisphere.
Figure 6: Histories in the Southern Hemisphere of halocarbons with uncertain emission records.

Similar content being viewed by others

References

  1. Montzka, S. A. et al. Decline in the tropospheric abundance of halogen from halocarbons: Implications for stratospheric ozone depletion. Science 272, 1318–1322 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Cunnold, D. M. et al. GAGE/AGAGE measurements indicating reductions in global emissions of CCl3F and CCl2F2 in 1992–1994. J. Geophys. Res. 102, 1259–1269 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Molina, M. J. & Rowland, F. S. Stratospheric sink for chlorofluoromethanes: Chlorine atom catalyzed destruction of ozone. Nature 249, 810–814 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Miller, J. M. Summary Report 1972(Rep. No. 1, Geophysical Monitoring for Climate Change, National Oceanic and Atmospheric Administration, Boulder, CO, 1974).

    Google Scholar 

  5. Prinn, R. G. et al. The Atmospheric Lifetime Experiment 1. Introduction, instrumentation, and overview. J. Geophys. Res. C 88, 8353 –8367 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Gamlen, P. H., Lane, B. C., Midgley, P. M. & Steed, J. M. The production and release to the atmosphere of CCl3F and CCl 2F2(chlorofluorocarbons CFC-11 and CFC-12). Atmos. Environ. 20, 1077–1085 ( 1986).

    Article  ADS  CAS  Google Scholar 

  7. Fisher, D. A. & Midgley, P. M. Uncertainties in the calculation of atmospheric releases of chlorofluorocarbons. J. Geophys. Res. 99, 16643–16650 ( 1994).

    Article  ADS  CAS  Google Scholar 

  8. Gribble, G. W. Natural organohalogens. J. Chem. Educ. 71, 907–911 (1994).

    Article  CAS  Google Scholar 

  9. Khalil, M. A. K. & Rasmussen, R. A. Atmospheric methyl chloride. Atmos. Environ. 33, 1305 –1321 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Butler, J. H. Scientific uncertainties in the budget of atmospheric methyl bromide. Atmos. Environ. 30, R1–R3 (1996).

    Article  Google Scholar 

  11. Penkett, S. A. et al. in Scientific Assessment of Ozone Depletion: 1994(eds Albritton, D. L., Watson, R. T. &Aucamp, P. J.) Ch. 10 (World Meteorological Organization, Geneva, Switzerland, 1995).

    Google Scholar 

  12. Lovelock, J. E., Maggs, R. J. & Wade, R. J. Halogenated hydrocarbons in and over the Atlantic. Nature 241, 194–196 (1973).

    Article  ADS  CAS  Google Scholar 

  13. Isidorov, V. A., Zenkevich, I. G. & Ioffe, B. V. Volatile organic compounds in solfataric gases. J. Atmos. Chem. 10, 329–340 (1990).

    Article  CAS  Google Scholar 

  14. Schwander, J. et al. The age of the air in the firn and the ice at Summit, Greenland. J. Geophys. Res. 98, 2831– 2838 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Sturges, W. T., Penkett, S. A., Barnola, J.-M. & Chappellaz, J. A. in Chemical Exchange between the Atmosphere and Polar Snow(eds Wolff, E. W. &Bales, R. C.) 617–622 (Springer, New York, 1995).

    Google Scholar 

  16. Battle, M. et al. Histories of atmospheric gases from the firn at South Pole. Nature 383, 231–235 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Elkins, J. W. in Summary Report 1994–1995(eds Hofmann, D. J., Peterson, J. T. &Rosson, R. M.) 84–111 (Rep. No. 23, Climate Monitoring and Diagnostics Lab., US Dept of Commerce, Boulder, 1996).

    Google Scholar 

  18. Butler, J. H. et al. in Summary Report 1996–1997(eds Hofmann, D. J., Peterson, J. T. &Rosson, R. M.) 91–121 (Rep. No. 24, Climate Monitoring and Diagnostics Lab., US Dept of Commerce, Boulder, 1998).

    Google Scholar 

  19. Schwander, J., Stauffer, B. & Sigg, A. Air mixing in firn and the age of the air at pore close-off. Ann. Glaciol. 10, 141– 145 (1988).

    Article  ADS  Google Scholar 

  20. Bender, M. L., Sowers, T., Barnola, J.-M. & Chappeallaz, J. Changes in the O2/N2ratio of the atmosphere during recent decades reflected in the composition of air in the firn at Vostok Station, Antarctica. Geophys. Res. Lett. 21, 189– 192 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Craig, H., Horibe, YT. & Sowers, T. Gravitational separation of gases and isotopes in polar ice caps. Science 242, 1675– 1678 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Sowers, T., Bender, M. & Reynaud, D. Elemental and isotopic composition of occluded O 2and N2in polar ice. J. Geophys. Res. 94, 5137–5150 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Martinerie, P., Raynaud, D., Etheridge, D. M., Barnola, J.-M. & Mazaudier, D. Physical and climatic parameters which influence the air content in polar ice. Earth Planet. Sci. Lett. 112, 1–13 ( 1992).

    Article  ADS  Google Scholar 

  24. Lovelock, J. E. Methyl chloroform in the troposphere as an indicator of OH radical abundance. Nature 267, 32 (1977 ).

    Article  ADS  CAS  Google Scholar 

  25. Singh, H. B., Salas, L. J., Shigeishi, H. & Scribner, E. Atmospheric halocarbons, hydrocarbons, and sulfur hexafluoride: Global distributions, sources, and sinks. Science 203, 899– 903 (1979).

    Article  ADS  CAS  Google Scholar 

  26. Rasmussen, R. A. & Khalil, M. A. K. Atmospheric trace gases: Trends and distributions over the last decade. Science 232, 1623–1624 ( 1986).

    Article  ADS  CAS  Google Scholar 

  27. Fraser, P. et al. Lifetime and emission estimates of 1,1,2-trichlorotrifluorethane (CFC-113) from daily global background observations June 1982 June 1994. J. Geophys. Res. 101, 12585–12599 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Maiss, M. & Levin, I. Global increase of SF6observed in the atmosphere. Geophys. Res. Lett. 21, 569–572 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Singh, H. B., Salas, L., Shigeishi, H. & Crawford, A. Urban-nonurban relationships of halocarbons, SF6, N2O, and other atmospheric trace constituents. Atmos. Environ. 11, 819–828 (1977).

    Article  ADS  CAS  Google Scholar 

  30. Ehhalt, D. H. et al. in Report of the International Ozone Trends Panel, 1988(ed. Watson, R. D.) 543–570 (Rep. No. 18, United Nations Environmental Programme, Nairobi, 1988).

    Google Scholar 

  31. Prinn, R. G. et al. Atmospheric trends and lifetime of trichlorethane and global average hydroxyl radical concentrations based on 1978–1994 ALE/GAGE measurements. Science 269, 187– 192 (1995).

    Article  ADS  CAS  Google Scholar 

  32. Wingenter, O. W., Wang, C. J.-L., Blake, D. R. & Rowland, F. S. Seasonal variation of tropospheric methyl bromide concentrations: Constraints on anthropogenic input. Geophys. Res. Lett. 25, 2797–2801 (1998).

    Article  ADS  CAS  Google Scholar 

  33. Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, 4115–4128 (1996).

    Article  ADS  CAS  Google Scholar 

  34. McCulloch, A. Global production and emissions of bromochlorodifluoromethane and bromotrifluoromethane (halons 1211 and 1301). Atmos. Environ. A 26, 1325–1329 (1992).

    Article  ADS  Google Scholar 

  35. Geller, L. S. et al. Tropospheric SF6: Observed latitudinal distribution and trends, derived emissions and interhemispheric exchange time. Geophys. Res. Lett. 24, 675–678 (1997).

    Article  ADS  CAS  Google Scholar 

  36. Elkins, J. W. et al. Decrease in the growth rates of atmospheric chlorofluorocarbons 11 and 12. Nature 364, 780– 783 (1993).

    Article  ADS  CAS  Google Scholar 

  37. Butler, J. H., Montzka, S. A., Clarke, A. D., Lobert, J. M. & Elkins, J. W. Growth and distribution of halons in the atmosphere. J. Geophys. Res. 103, 1503–1511 (1998).

    Article  ADS  CAS  Google Scholar 

  38. Sanhueza, E., Fraser, P. J. & Zander, R. J. in Scientific Assessment of Ozone Depletion: 1994 (eds Albritton, D. A., Watson, R. T. &Aucamp, P. J.) 2.1– 2.38 (World Meteorological Organization, Geneva, 1995 ).

    Google Scholar 

  39. Krysell, M. & Wallace, D. W. R. Arctic Ocean ventilation studied with a suite of anthropogenic halocarbon tracers. Science 242, 746–749 (1988).

    Article  ADS  CAS  Google Scholar 

  40. Walker, S. J., Weiss, R. F. & Salameh, P. K. Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-12, CFC-113 and carbon tetrachloride. J. Geophys. Res.(submitted).

  41. Galbally, I. E. Man-made carbon tetrachloride in the atmosphere. Science 193, 573–576 (1976).

    Article  ADS  CAS  Google Scholar 

  42. Moore, R. M., Groszko, W. & Niven, S. J. Ocean-atmosphere exchange of methyl chloride: Results from NW Atlantic and Pacific Ocean studies. J. Geophys. Res. 101, 28529–28538 (1996).

    Article  ADS  CAS  Google Scholar 

  43. Rudolph, J., Khedim, A., Koppmann, R. & Bonsang, B. Field study of the emissions of methyl chloride and other halocarbons from biomass burning in western Africa. J. Atmos. Chem. 22, 67 –80 (1995).

    Article  CAS  Google Scholar 

  44. Harper, D. B. Halomethane from halide ion—a highly efficient fungal conversion of environmental significance. Nature 315, 55–57 (1985).

    Article  ADS  CAS  Google Scholar 

  45. Report of the Ninth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal)(United Nations Environmental Programme, New York, 1997).

  46. Butler, J. & Rodrigues, J. in The Methyl Bromide Issue(eds Bell, C., Price, N. &Chakrabarti, B.) 27–90 (Wiley and Sons, London, 1996).

    Google Scholar 

  47. Yvon-Lewis, S. A. & Butler, J. H. The potential effect of oceanic biological degradation on the lifetime of atmospheric CH 3Br. Geophys. Res. Lett. 24, 1227– 1230 (1997).

    Article  ADS  CAS  Google Scholar 

  48. Rasmussen, R. A. & Khalil, M. Gaseous bromine in the arctic and arctic haze. Geophys. Res. Lett. 11, 433–436 (1984).

    Article  ADS  CAS  Google Scholar 

  49. Wilke, C. R. & Lee, C. Y. Estimation of diffusion coefficients for gases and vapors. Ind. Eng. Chem. 47, 1253–1257 (1955).

    Article  CAS  Google Scholar 

  50. Prinn, R. G. et al. The Atmospheric Lifetime Experiment 5. Results for CH 3CCl3based on three years of data. J. Geophys. Res. C 88, 8415–8426 ( 1983).

    Article  ADS  CAS  Google Scholar 

  51. Prinn, R. et al. Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data from 1978–1990. J. Geophys. Res. D 97, 2445– 2461 (1992).

    Article  ADS  CAS  Google Scholar 

  52. Khalil, M. A. K., Rasmussen, R. A. & Gunawardena, R. Atmospheric methyl bromide: Trends and global mass balance. J. Geophys. Res. D 98, 2887– 2896 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank those responsible for drilling at South Pole (D. Giles and J. Kyne), Tunu (J.Kyne and B. Bergeron) and Siple Dome (E. Ramsey, J. Brown, and S. Root). We also thank R. Myers for preparation of standards used in this work. This research was supported by the NSF Office of Polar Programs, the National Institute of Global Environmental Change (NIGEC), the Atmospheric Chemistry Project of NOAA's Climate and Global Change Program, and the Methyl Bromide Global Coalition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Butler.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, J., Battle, M., Bender, M. et al. A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature 399, 749–755 (1999). https://doi.org/10.1038/21586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21586

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing