Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global changes in intensity of the Earth's magnetic field during the past 800 kyr

Abstract

Recent advances in palaeomagnetic and dating techniques have led to increasingly precise records of the relative intensity of the Earth's past magnetic field at numerous field sites. The compilation and analysis of these records can provide important constraints on changes in global magnetic field intensity and therefore on the Earth's geodynamo itself. A previous compilation for the past 200 kyr integrated 17 marine records into a composite curve1, with the geomagnetic origin of the signal supported by an independent analysis of 10Be production made on different cores2. The persistence of long-term features in the Earth's magnetic intensity or the existence of long-term periodic changes cannot, however, be resolved in this relatively short time span. Here we present the integration of 33 records of relative palaeointensity3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 into a composite curve spanning the past 800 kyr. We find that the intensity of the Earth's dipole field has experienced large-amplitude variations over this time period with pronounced intensity minima coinciding with known excursions in field direction, reflecting the emergence of non-dipole components. No stable periodicity was found in our composite record and therefore our data set does not support the hypothesis that the Earth's orbital parameters have a direct and strong influence on the geodynamo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic record (Sint-800) with its standard error obtained from the stack of 33 records of palaeointensity.
Figure 2: Tests of our synthetic record, Sint-800.
Figure 3: Spectral analysis of Sint-800 using the Blackman–Tukey method with a Bartless window.

Similar content being viewed by others

References

  1. Guyodo, Y. & Valet, J.-P. Relative variations in geomagnetic intensity from sedimentary records: the past 200,000 years. Earth Planet. Sci. Lett. 143, 23–36 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Frank, M. et al. A200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments. Earth Planet. Sci. Lett. 149, 121–129 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Tric, E. et al. Paleointensity of the geomagnetic field for the last 80,000 years. J. Geophys. Res. 97, 9337– 9351 (1992).

    Article  ADS  Google Scholar 

  4. Meynadier, L., Valet, J.-P., Weeks, R., Shackleton, N. & Hagee, V. L. Relative geomagnetic intensity of the field during the last 140 ka. Earth Planet. Sci. Lett. 114 , 39–57 (1992).

    Article  ADS  Google Scholar 

  5. Tauxe, L. & Wu, G. Normalised remanence in sediments from western equatorial Pacific: relative paleointensity of the geomagnetic field. J. Geophys. Res. 95, 12337– 12350 (1990).

    Article  ADS  Google Scholar 

  6. Tauxe, L. & Shackleton, N. J. Relative paleointensity records from the Ontong-Java Plateau. Geophys. J. Int. 117, 769–782 (1994).

    Article  ADS  Google Scholar 

  7. Yamazaki, T. & Ioka, N. Long-term secular variation of the geomagnetic field during the last 200 k.y. recorded in sediment cores from the western equatorial Pacific. Earth. Planet. Sci. Lett. 128, 527–544 ( 1994).

    Article  ADS  CAS  Google Scholar 

  8. Lehman, B. et al. Relative changes of the geomagnetic field intensity during the last 280 kyear from piston cores in the Acores area. Phys. Earth Planet. Inter. 93, 269–284 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Schneider, D. A. Late Pleistocene and Holocene geomagnetic intensity variations recorded in Sulu Sea sediments. Eos (suppl.) 75, S119 (1994).

    Google Scholar 

  10. Stoner, J. S., Channell, J. E. T. & Hillaire-Marcel, C. A200 ka chronostratigraphy for the Labrador Sea: Indirect correlation of the sediment record to SPECMAP. Earth. Planet. Sci. Lett. 159, 165– 181 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Channell, J. E. T., Hodell, D. A., McManus, J. & Lehman, B. Orbital modulation of the Earth's magnetic field intensity. Nature 394, 464–468 ( 1998).

    Article  ADS  CAS  Google Scholar 

  12. Valet, J.-P., Meynadier, L., Bassinot, F. & Garnier, F. Relative paleointensity across the last geomagnetic reversal from sediments of the Atlantic, Indian and Pacific Oceans. Geophys. Res. Lett. 21, 485–488 ( 1994).

    Article  ADS  Google Scholar 

  13. Schneider, D. A. & Mello, G. A. Ahigh-resolution marine sedimentary record of geomagnetic intensity during the Brunhes Chron. Earth Planet. Sci. Lett. 144, 297– 314 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Yamazaki, T., Ioka, N. & Eguchi, N. Relative paleointensity of the geomagnetic field during the Brunhes Chron. Earth Planet. Sci. Lett. 136, 525–540 (1995).

    Article  ADS  Google Scholar 

  15. Meynadier, L., Valet, J.-P., Bassinot, F., Shackleton, N. & Guyodo, Y. Asymmetrical saw-tooth pattern of the geomagnetic field intensity from equatorial sediments in the Pacific and Indian Oceans. Earth Planet. Sci. Lett. 126, 109–127 (1994).

    Article  ADS  Google Scholar 

  16. Meynadier, L. & Valet, J.-P. Relative geomagnetic intensity during the last 4 m.y. from the equatorial Pacific. Proc. ODP Sci. Res. 138, 779–795 (1995).

    Google Scholar 

  17. Meynadier, L., Valet, J.-P., Guyodo, Y. & Richter, C. Saw-toothed variations of relative paleointensity and cumulative viscous remanence: Testing the records and the model. J. Geophys. Res. 103, 7095 –7105 (1998).

    Article  ADS  Google Scholar 

  18. Guyodo, Y., Richter, C. & Valet, J.-P. Paleointensity record from the Pleistocene sediments (1.4–0 Ma) off the California Margin. J. Geophys..Res. (in the press).

  19. Kent, D. V. & Opdyke, N. D. Paleomagnetic field intensity recorded in a Brunhes epoch deep-sea sediment core. Nature 266, 156–159 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Bassinot, F. C. et al. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett. 126, 91–108 (1994).

    Article  ADS  Google Scholar 

  21. . Martinson, D. G. et al. Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res. 27, 1–29 ( 1987).

    Article  CAS  Google Scholar 

  22. Merill, R. T., Mc Elhinny, M. W. & McFadden, P. L. (eds The Magnetic Field of the Earth (Int. Geophysics Ser., Academic, London, (1998).

    Google Scholar 

  23. Valet, J.-P. & Meynadier, L. Geomagnetic field intensity and reversals during the past four million years. Nature 366, 91–95 (1993).

    Article  Google Scholar 

  24. Merill, R. T. & McFadden, P. L. Geomagnetic stability: Reversal events and excursions. Earth Planet. Sci. Lett. 121 , 57–69 (1994).

    Article  ADS  Google Scholar 

  25. Langereis, C. G., Dekkers, M. J., de Lange, G. J., Paterne, M. & van Santvoort, P. J. M. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophys. J. Int. 129, 75–94 ( 1997).

    Article  ADS  Google Scholar 

  26. Quidelleur, X., Gillot, P. Y. & Carlut, J. Link between excursions and paleointensity inferred from abnormal field directions recorded at La Palma around 600 ka. (suppl.) 78, F181 (1997).

  27. Champion, D. E., Lanphere, M. A. & Kuntz, M. A. Evidence for a new geomagnetic reversal from lava flows in Idaho: Discussion of short polarity reversals in the Brunhes and late Matuyama polarity chrons. J. Geophys. Res. 93, 11667–11680 (1988).

    Article  ADS  Google Scholar 

  28. Worm, H.-U. Alink between geomagnetic reversals, events and glaciations. Earth Planet. Sci. Lett. 177, 55–67 (1997).

    Article  ADS  Google Scholar 

  29. Malkus, W. V. R. Precession of the earth as the cause of geomagnetism. Science 160, 259–264 (1968).

    Article  ADS  CAS  Google Scholar 

  30. Wollin, G., Ericson, D. B. & Ryan, W. B. F. Magnetism of the earth and climatic changes. Earth Planet. Sci. Lett. 12, 171–183 (1971).

    Article  ADS  Google Scholar 

  31. Creer, K. M., Thouveny, N. & Blunk, I. Climatic and geomagnetic influences on the Lac du Bouchet paleomagnetic record through the last 110,000 years. Phys. Earth Planet. Inter. 64, 314–341 (1990).

    Article  ADS  Google Scholar 

  32. Vanyo, J. P. Ageodynamo powered by luni-solar precession. Geophys. Astrophys. Fluid Dyn. 59, 209–234 ( 1991).

    Article  ADS  Google Scholar 

  33. Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos 77, 379 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. E. T. Channell, C. Laj, L. Meynadier, D. A. Schneider, J. S. Stoner, L. Tauxe and T. Yamazaki for supplying data, and F. C. Bennett for comments. This work was supported by the CNRS-INSU program Intérieur de la Terre. At this University of Florida, Y.G. was supported by a grant awarded to J. E. T. Channell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohan Guyodo.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guyodo, Y., Valet, JP. Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature 399, 249–252 (1999). https://doi.org/10.1038/20420

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20420

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing