Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Determinants of variable response to simvastatin treatment: the role of common variants of SCAP, SREBF-1a and SREBF-2 genes

Abstract

We investigated the effect of single-nucleotide polymorphisms in sterol regulatory element-binding factors-1a and -2 (SREBF-1a and SREBF-2) and SREBF cleavage-activating protein (SCAP) genes on lipid-lowering response to simvastatin. In all, 146 hypercholesterolemic patients of European descent were prospectively treated with simvastatin 20 mg/day for over 6 months. Of these 99 subjects completed the 6-month follow-up. Plasma lipids and lipoproteins were measured before and throughout the study. The mean percentage decrease in plasma total cholesterol (TC) was greater in subject carriers of SCAP 2386G allele compared with those homozygous for 2386A allele (−29.6±13.4 vs −22.1±13.8%, P=0.007). About 61% of the 2386G carriers were above-average responders for TC levels (ΔTC −27.8%), whereas only 29% of 2386A homozygous reached this reduction (P=0.009). Our data suggest that the SCAP 2386A>G gene polymorphism was a significant predictor of TC and triglyceride responses to simvastatin treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Abbreviations

Apo:

apolipoprotein

CHD:

coronary heart disease

ER:

endoplasmatic reticulum

HDL-C:

high-density lipoprotein cholesterol

LDL-C:

low-density lipoprotein cholesterol

SCAP:

SREBF cleavage-activating protein

SD:

standard deviation

SNPs:

single-nucleotide polymorphisms

SREBF:

sterol regulatory element-binding factor

TC:

total cholesterol

TG:

triglyceride

WD:

triptophane-aspartate

References

  1. Pignone M, Phillips C, Multow C . Use of lipid lowering drugs for primary prevention of coronary heart disease: meta-analysis of randomised trials. BMJ 2001; 321: 1–5.

    Google Scholar 

  2. Vaughan CJ, Gotto AM, Basson CT . The evolving role of statins in management of atherosclerosis. J Am Coll Cardiol 2000; 35: 1–10.

    Article  CAS  PubMed  Google Scholar 

  3. Gotto AM . Emerging perspectives on lipid management: international approaches and global challenges. Am J Cardiol 2001; 88: 876–881.

    Article  PubMed  Google Scholar 

  4. Maitland-van der Zee AH, Klungel OH, Stricker BHC, Verschuren WMM, Kastelein JJP, Leufkens HGM et al. Genetic polymorphisms: importance for response to HMG-CoA reductase inhibitors. Atherosclerosis 2002; 163: 213–222.

    Article  CAS  PubMed  Google Scholar 

  5. Hoffman MM, Winkelmann BR, Wieland H, Marz W . The significance of genetic polymorphisms in modulating the response to lipid-lowering drugs. Pharmacogenomics 2001; 2: 1–11.

    Article  Google Scholar 

  6. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F . SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 2004; 86: 839–848.

    Article  CAS  PubMed  Google Scholar 

  7. Brown MS, Goldstein JL . A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 1999; 96: 11041–11048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Edwards PA, Tabor D, Kast HR, Venkasteswaran A . Regulation of gene expression by SREBP and SCAP. Biochim Biophys Acta 2000; 1529: 103–113.

    Article  CAS  PubMed  Google Scholar 

  9. Gimpl G, Burger K, Fahrenholz F . A closer look at the cholesterol sensor. Trends Biochem Sci 2002; 27: 596–599.

    Article  CAS  PubMed  Google Scholar 

  10. Horton JD, Goldstein JL, Brown MS . SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109: 1125–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakajima T, Hamakubo T, Kodama T, Inazawa J, Emi M . Genomic structure and chromosomal mapping of the human sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) gene. J Hum Genet 1999; 44: 402–407.

    Article  CAS  PubMed  Google Scholar 

  12. Hua X, Nohturfft A, Goldstein JL, Brown MS . Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell 1996; 10: 1096–1107.

    Google Scholar 

  13. Salek L, Lutucuta S, Ballantyne CM, Gotto Jr AM, Marian AJ . Effects of SREBF-1a and SCAP polymorphisms on plasma levels of lipids, severity, progression and regression of coronary atherosclerosis and response to therapy with fluvastatin. J Mol Med 2002; 80: 737–744.

    Article  CAS  PubMed  Google Scholar 

  14. Fan YM, Laaksonen R, Janatuinen T, Vesalainen R, Nuutila P, Knuuti J et al. Effects of pravastatin therapy on serum lipids and coronary reactivity are not associated with SREBP cleavage-activating protein polymorphism in healthy young men. Clin Genet 2001; 60: 319–321.

    Article  CAS  PubMed  Google Scholar 

  15. Beiard SL . HMG-Coa reductase inhibitors: assessing differences in drug interactions and safety profiles. Am J Pharm Assoc 2000; 40: 637–644.

    Google Scholar 

  16. Chong PH, Seeger JD, Franklin C . Cinically relevant differences between the statins: implications for therapeutic selection. Am J Med 2001; 111: 390–400.

    Article  CAS  PubMed  Google Scholar 

  17. Igel M, Sudhop T, vonBergmann K . Metabolism and drug interaction of 3-hydroxy-3-methylglutaryl coenzyme A-reductase inhibitors (statins). Eur J Clin Pharmacol 2001; 57: 357–367.

    Article  CAS  PubMed  Google Scholar 

  18. Parra FC, Amado RC, Lambertucci JR, Rocha J, Antunes CM, Pena SD . Color and genomic ancestry in Brazilians. Proc Natl Acad Sci USA 2003; 100: 177–182.

    Article  CAS  PubMed  Google Scholar 

  19. Zembrzusky VM, Callegari-Jacques SM, Hutz MH . Utilização de marcadores autossomicos para o controle de estratificação populacional em estudos de associação. Anais do 50° Congresso Brasileiro de Genética 2004. Florianopolis: Brazil, p 503.

    Google Scholar 

  20. Shimano H . Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 2001; 40: 439–452.

    Article  CAS  PubMed  Google Scholar 

  21. Yang WS, Deeb SS . Sp1 and Sp3 transactivate the human lipoprotein lipase gene promoter through binding to a CT element: synergy with the sterol regulatory element binding protein and reduced transactivation of a naturally occurring promoter variant. J Lipid Res 1998; 39: 2054–2064.

    CAS  PubMed  Google Scholar 

  22. Botma GJ, van Deursen D, Vieira D, van Hoek M, Jansen H, Verhoeven AJM . Sterol-regulatory-element binding protein inhibits upstream stimulatory factor-stimulated hepatic lipase gene expression. Atherosclerosis 2005; 179: 61–67.

    Article  CAS  PubMed  Google Scholar 

  23. Salzano FM, Freire-Maia N . Problems in Human Biology. A Study of Brazilian Populations. Wayne State University Press: Detroit, 1970.

    Google Scholar 

  24. Friedewald NT, Levy RI, Fredrickson DS . Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without using the preparative ultracentrifuge. Clin Chem 1972; 18: 499–502.

    CAS  PubMed  Google Scholar 

  25. Lahiri DK, Nurnberger JI . A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acid Res 1991; 19: 5444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iwaki K, Nakajima T, Ota N, Emi M . A common Ile796Val polymorphism of the human SREBP cleavage-activating protein (SCAP) gene. J Hum Genet 1999; 44: 421–422.

    Article  CAS  PubMed  Google Scholar 

  27. Védie B, Jeunemaitre X, Mégnien JL, Atger V, Simon A, Moatti N . A new DNA polymorphism in the 5′ untranslated region of the human SREBP-1a is related to development of atherosclerosis in high cardiovascular risk population. Atherosclerosis 2001; 154: 589–597.

    Article  PubMed  Google Scholar 

  28. Miserez AR, Muller PY, Barella L, Barella S, Staehelin B, Leitersdorf E et al. Sterol-regulatory element-binding protein (SREBP-2) contributes to polygenic hypercholesterolemia. Atherosclerosis 2002; 164: 15–26.

    Article  CAS  PubMed  Google Scholar 

  29. Dupont WD, Plummer WD . PS power and sample size program available for free on the Internet. Control Clin Trials 1997; 18: 274.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff of Centro de Diagnóstico Cardiológico for their assistance. Financial support for this work was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), Programa de Apoio a Núcleos de Excelência (PRONEX, Brazil) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brazil). We are also grateful to the Merck Sharp & Dohme Pharmaceutical Company for providing simvastatin for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M H Hutz.

Additional information

DUALITY OF INTEREST

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiegenbaum, M., Silveira, F., Van der Sand, C. et al. Determinants of variable response to simvastatin treatment: the role of common variants of SCAP, SREBF-1a and SREBF-2 genes. Pharmacogenomics J 5, 359–364 (2005). https://doi.org/10.1038/sj.tpj.6500334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500334

Keywords

This article is cited by

Search

Quick links