Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Dendritic cells genetically engineered to express IL-4 exhibit enhanced IL-12p70 production in response to CD40 ligation and accelerate organ allograft rejection

Abstract

C57BL/10 (B10; H2b) bone marrow-derived myeloid dendritic cells (DC) propagated in GM-CSF + IL-4 were transduced with r adenoviral (Ad) vectors encoding either control neomycin-resistance gene (Ad-Neo) or murine IL-4 (Ad-IL-4) on day 5 of culture following CD11c immunomagnetic bead purification. Both Ad-Neo- and Ad-IL-4-transduced DC displayed upregulated surface MHC class II and costimulatory molecules (CD40, CD80, CD86). Ad-IL-4 DC secreted higher levels of bioactive IL-12p70 after CD40 ligation or LPS stimulation than either Ad-Neo or unmodified DC. Only Ad-IL-4 DC produced IL-12p70 in primary MLR, in which they induced augmented proliferative responses of naïve allogeneic C3H/HeJ (C3H; H2k) T-cells. Compared with Ad-Neo DC, Ad-IL-4 DC were also more effective in priming naïve allogeneic recipients to exhibit specifically enhanced anti-donor T-cell proliferative and CTL responses. T-cells primed in vivo 7 days previously with Ad-IL-4 DC displayed enhanced secretion of Th2 (IL-4, IL-10) but also higher Th1 cytokine (IFNγ) production following ex vivo challenge with donor alloAg. Moreover, pretreatment of vascularized heart graft recipients with i.v. Ad-IL-4 DC, 1 week before transplant, significantly accelerated rejection and antagonized the therapeutic effect of anti-CD40L (CD154) mAb. These data contrast markedly with recently reported inhibitory effects of autologous Ad-IL-4 DC on autoimmune inflammatory disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Steinman RM . The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271–296.

    Article  CAS  PubMed  Google Scholar 

  2. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  PubMed  Google Scholar 

  3. Larsen CP, Morris PJ, Austyn JM . Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J Exp Med 1990; 171: 307–314.

    Article  CAS  PubMed  Google Scholar 

  4. Lechler RI, Batchelor JR . Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med 1982; 155: 31–41.

    Article  CAS  PubMed  Google Scholar 

  5. Lu L et al. Bone marrow-derived dendritic cell progenitors (NLDC 145+, MHC class II+, B7-1dim, B7-2-) induce alloantigen-specific hyporesponsiveness in murine T lymphocytes. Transplantation 1995; 60: 1539–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fu F et al. Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86-) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation 1996; 62: 659–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rastellini C et al. Granulocyte/macrophage colony-stimulating factor-stimulated hepatic dendritic cell progenitors prolong pancreatic islet allograft survival. Transplantation 1995; 60: 1366–1370.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lutz MB et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 2000; 30: 1813–1822.

    Article  CAS  PubMed  Google Scholar 

  9. Jonuleit H et al. Induction of interleukin 10-producing, nonproliferating CD4(+) T-cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000; 192: 1213–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dhodapkar MV et al. Antigen-specific inhibition of effector T-cell function in humans after injection of immature dendritic cells. J Exp Med 2001; 193: 233–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hackstein H, Morelli AE, Thomson AW . Designer dendritic cells for tolerance induction: guided not misguided missiles. Trends Immunol 2001; 22: 437–442.

    Article  CAS  PubMed  Google Scholar 

  12. Morelli AE, Hackstein H, Thomson AW . Potential of tolerogenic dendritic cells for transplantation. Semin Immunol 2001; 13: 323–335.

    Article  CAS  PubMed  Google Scholar 

  13. Lu L et al. Genetic engineering of dendritic cells to express immunosuppressive molecules (viral IL-10, TGF-beta, and CTLA4Ig). J Leukoc Biol 1999; 66: 293–296.

    Article  CAS  PubMed  Google Scholar 

  14. Takayama T, Tahara H, Thomson AW . Transduction of dendritic cell progenitors with a retroviral vector encoding viral interleukin-10 and enhanced green fluorescent protein allows purification of potentially tolerogenic antigen-presenting cells. Transplantation 1999; 68: 1903–1909.

    Article  CAS  PubMed  Google Scholar 

  15. Gorczynski RM et al. Synergy in induction of increased renal allograft survival after portal vein infusion of dendritic cells transduced to express TGFbeta and IL-10, along with administration of CHO cells expressing the regulatory molecule OX-2. Clin Immunol 2000; 95: 182–189.

    Article  CAS  PubMed  Google Scholar 

  16. Lu L et al. Adenoviral delivery of CTLA4Ig into myeloid dendritic cells promotes their in vitro tolerogenicity and survival in allogeneic recipients. Gene Ther 1999; 6: 554–563.

    Article  CAS  PubMed  Google Scholar 

  17. Takayama T et al. Feasibility of CTLA4Ig gene delivery and expression in vivo using retrovirally transduced myeloid dendritic cells that induce alloantigen-specific T-cell anergy in vitro. Gene Ther 2000; 7: 1265–1273.

    Article  CAS  PubMed  Google Scholar 

  18. Matsue H et al. Induction of antigen-specific immunosuppression by CD95L cDNA-transfected ‘killer’ dendritic cells. Nat Med 1999; 5: 930–937.

    Article  CAS  PubMed  Google Scholar 

  19. Min WP et al. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. J Immunol 2000; 164: 161–167.

    Article  CAS  PubMed  Google Scholar 

  20. Lee WC et al. Phenotype, function, and in vivo migration and survival of allogeneic dendritic cell progenitors genetically engineered to express TGF-beta. Transplantation 1998; 66: 1810–1817.

    Article  CAS  PubMed  Google Scholar 

  21. Coates PT et al. Human myeloid dendritic cells transduced with an adenoviral interleukin-10 gene construct inhibit human skin graft rejection in humanized NOD-scid chimeric mice. Gene Ther 2001; 8: 1224–1233.

    Article  CAS  PubMed  Google Scholar 

  22. O'Rourke RW et al. A dendritic cell line genetically modified to express CTLA4-IG as a means to prolong islet allograft survival. Transplantation 2000; 69: 1440–1446.

    Article  CAS  PubMed  Google Scholar 

  23. Chomarat P, Rybak ME, Banchereau J . Interleukin-4 In: Thomson AW (ed) The Cytokine Handbook. Academic Press: San Diego, 1998, pp 133–174.

    Google Scholar 

  24. Levy AE, Alexander JW . Administration of intragraft interleukin-4 prolongs cardiac allograft survival in rats treated with donor-specific transfusion/cyclosporine. Transplantation 1995; 60: 405–406.

    Article  CAS  PubMed  Google Scholar 

  25. He XY et al. Treatment with interleukin-4 prolongs allogeneic neonatal heart graft survival by inducing T helper 2 responses. Transplantation 1998; 65: 1145–1152.

    Article  CAS  PubMed  Google Scholar 

  26. Rabinovitch A et al. Combination therapy with cyclosporine and interleukin-4 or interleukin-10 prolongs survival of synergeneic pancreatic islet grafts in nonobese diabetic mice: islet graft survival does not correlate with mRNA levels of type 1 or type 2 cytokines, or transforming growth factor-beta in the islet grafts. Transplantation 1997; 64: 1525–1531.

    Article  CAS  PubMed  Google Scholar 

  27. Takeuchi T et al. Murine interleukin 4 transgenic heart allograft survival prolonged with down-regulation of the Th1 cytokine mRNA in grafts. Transplantation 1997; 64: 152–157.

    Article  CAS  PubMed  Google Scholar 

  28. Kato H et al. Adenovirus-mediated gene transfer of IL-4 prolongs rat renal allograft survival and inhibits the p21(ras)-activation pathway. Transplant Proc 2000; 32: 245–246.

    Article  CAS  PubMed  Google Scholar 

  29. Fanslow WC et al. Regulation of alloreactivity in vivo by IL-4 and the soluble IL-4 receptor. J Immunol 1991; 147: 535–540.

    CAS  PubMed  Google Scholar 

  30. Raisanen-Sokolowski A, et al. Heart transplants in interferon-gamma, interleukin 4, and interleukin 10 knockout mice. Recipient environment alters graft rejection. J Clin Invest 1997; 100: 2449–2456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim SH et al. Effective treatment of established murine collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express IL-4. J Immunol 2001; 166: 3499–3505.

    Article  CAS  PubMed  Google Scholar 

  32. Morita Y et al. Dendritic cells genetically engineered to express IL-4 inhibit murine collagen-induced arthritis. J Clin Invest 2001; 107: 1275–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morelli AE et al. Recombinant adenovirus induces maturation of dendritic cells via an NF-kappaB-dependent pathway. J Virol 2000; 74: 9617–9628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niimi M et al. Operational tolerance induced by pretreatment with donor dendritic cells under blockade of CD40 pathway. Transplantation 2001; 72: 1556–1562.

    Article  CAS  PubMed  Google Scholar 

  35. Lu L et al. Blockade of the CD40–CD40 ligand pathway potentiates the capacity of donor-derived dendritic cell progenitors to induce long-term cardiac allograft survival. Transplantation 1997; 64: 1808–1815.

    Article  CAS  PubMed  Google Scholar 

  36. David A et al. Interleukin-10 produced by recombinant adenovirus prolongs survival of cardiac allografts in rats. Gene Ther 2000; 7: 505–510.

    Article  CAS  PubMed  Google Scholar 

  37. Gross A, Ben-Sasson SZ, Paul WE . Anti-IL-4 diminishes in vivo priming for antigen-specific IL-4 production by T-cells. J Immunol 1993; 150: 2112–2120.

    CAS  PubMed  Google Scholar 

  38. Abehsira-Amar O et al. IL-4 plays a dominant role in the differential development of Th0 into Th1 and Th2 cells. J Immunol 1992; 148: 3820–3829.

    CAS  PubMed  Google Scholar 

  39. Hochrein H et al. Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J Exp Med 2000; 192: 823–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kalinski P et al. IL-4 is a mediator of IL-12p70 induction by human Th2 cells: reversal of polarized Th2 phenotype by dendritic cells. J Immunol 2000; 165: 1877–1881.

    Article  CAS  PubMed  Google Scholar 

  41. Bullens DM et al. CD40L-induced IL-12 production is further enhanced by the Th2 cytokines IL-4 and IL-13. Scand J Immunol 2001; 53: 455–463.

    Article  CAS  PubMed  Google Scholar 

  42. Schulz O et al. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 2000; 13: 453–462.

    Article  CAS  PubMed  Google Scholar 

  43. Lee WC et al. Contrasting effects of myeloid dendritic cells transduced with an adenoviral vector encoding interleukin-10 on organ allograft and tumour rejection. Immunology 2000; 101: 233–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oriss TB et al. Evidence of positive cross-regulation on Th1 by Th2 and antigen-presenting cells: effects on Th1 induced by IL-4 and IL-12. J Immunol 1999; 162: 1999–2007.

    CAS  PubMed  Google Scholar 

  45. Inaba K et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992; 176: 1693–1702.

    Article  CAS  PubMed  Google Scholar 

  46. Hardy S et al. Construction of adenovirus vectors through Cre-lox recombination. J Virol 1997; 71: 1842–1849.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ono K, Lindsey ES . Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg 1969; 7: 225–229.

    Google Scholar 

Download references

Acknowledgements

We acknowledge Ms Shelly L Shaplye for her skilled assistance in manuscript preparation and Ms Alison J Logar for her expert assistance with flow cytometry.

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Public Health Service Grants R01 AI41011 and R01 DK 49745 (to AWT) and R21 HL69725 (to AEM) from the National Institutes of Health, and by the Roche Organ Transplantation Research Foundation (ROTRF 13068349) (to AWT)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneko, K., Wang, Z., Kim, S. et al. Dendritic cells genetically engineered to express IL-4 exhibit enhanced IL-12p70 production in response to CD40 ligation and accelerate organ allograft rejection. Gene Ther 10, 143–152 (2003). https://doi.org/10.1038/sj.gt.3301872

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301872

Keywords

This article is cited by

Search

Quick links