Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Liposome–DNA complexes infused intravenously inhibit tumor angiogenesis and elicit antitumor activity in dogs with soft tissue sarcoma

Abstract

Intravenous gene delivery using liposome–DNA complexes (LDC) has previously been shown to elicit antitumor activity, but only in rodent tumor models. Therefore, we conducted a study to determine in a large animal spontaneous tumor model whether intravenous infusions of LDC could target gene expression to cutaneous tumor tissues and whether repeated treatments had an effect on tumor growth or angiogenesis. A total of 13 dogs with cutaneous soft tissue sarcomas were enrolled in the study and were randomized to receive a series of 6 weekly infusions of LDC containing either canine endostatin DNA or DNA encoding an irrelevant gene (luciferase). Serial tumor biopsies were obtained to assess transgene expression, tumor microvessel density (MVD), and intratumoral leukocyte inflammatory responses. We found that intravenous infusion of LDC did not result in detectable gene expression in cutaneous tumor tissues. However, two of 13 treated dogs had objective tumor responses and eight dogs had stable disease during the treatment period. In addition, a significant decrease in tumor MVD was noted in six of 12 treated dogs at the completion of six treatments. These results suggest that intravenous infusions of LDC may elicit nonspecific antitumor activity and inhibit tumor angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bergers G, Benjamin LE . Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003; 3: 401–410.

    Article  CAS  PubMed  Google Scholar 

  2. Folkman J . Angiogenesis inhibitors: a new class of drugs. Cancer Biol Ther 2003; 2: S127–S133.

    CAS  PubMed  Google Scholar 

  3. Folkman J . Endogenous angiogenesis inhibitors. Apmis 2004; 112: 496–507.

    Article  CAS  PubMed  Google Scholar 

  4. Kerbel RS . Tumor angiogenesis: past, present and the near future. Carcinogenesis 2000; 21: 505–515.

    Article  CAS  PubMed  Google Scholar 

  5. Kerbel R, Folkman J . Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2: 727–739.

    Article  CAS  PubMed  Google Scholar 

  6. Kerbel RS, Kamen BA . The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004; 4: 423–436.

    Article  CAS  PubMed  Google Scholar 

  7. Ziche M, Donnini S, Morbidelli L . Development of new drugs in angiogenesis. Curr Drug Targets 2004; 5: 485–493.

    Article  CAS  PubMed  Google Scholar 

  8. Glade-Bender J, Kandel JJ, Yamashiro DJ . VEGF blocking therapy in the treatment of cancer. Expert Opin Biol Ther 2003; 3: 263–276.

    Article  CAS  PubMed  Google Scholar 

  9. Heymach JV, Desai J, Manola J, Davis D, McConkey J, Harmon D et al. Phase II study of the antiangiogenic agent SU5416 in patients with advanced soft tissue sarcomas. Clin Cancer Res 2004; 10: 5732–5740.

    Article  CAS  PubMed  Google Scholar 

  10. Iqbal S, Lenz HJ . Angiogenesis inhibitors in the treatment of colorectal cancer. Semin Oncol 2004; 31: 10–16.

    Article  CAS  PubMed  Google Scholar 

  11. Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J et al. Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res 2004; 10: 88–95.

    Article  CAS  PubMed  Google Scholar 

  12. Zondor SD, Medina PJ . Bevacizumab: an angiogenesis inhibitor with efficacy in colorectal and other malignancies. Ann Pharmacother 2004; 38: 1258–1264.

    Article  CAS  PubMed  Google Scholar 

  13. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    Article  CAS  PubMed  Google Scholar 

  14. Kisker O, Becker CM, Prox D, Fannon M, D’Amato R, Flynn E et al. Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res 2001; 61: 7669–7674.

    CAS  PubMed  Google Scholar 

  15. Eder Jr JP, Supko JG, Clark JW, Puchalski TA, Garcia-Carbonero R, Ryan DP et al. Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 2002; 20: 3772–3784.

    Article  CAS  PubMed  Google Scholar 

  16. Jouanneau E, Alberti L, Nejjari M, Treilleux I, Vilgrain I, Duc A et al. Lack of antitumor activity of recombinant endostatin in a human neuroblastoma xenograft model. J Neurooncol 2001; 51: 11–18.

    Article  CAS  PubMed  Google Scholar 

  17. Folkman J . Antiangiogenic gene therapy. Proc Natl Acad Sci USA 1998; 95: 9064–9066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jin X, Bookstein R, Wills K, Avanzini J, Tsai V, LaFace D et al. Evaluation of endostatin antiangiogenesis gene therapy in vitro and in vivo. Cancer Gene Ther 2001; 8: 982–989.

    Article  CAS  PubMed  Google Scholar 

  19. Li PY, Lin JS, Feng ZH, He YF, Zhou HJ, Ma X et al. Combined gene therapy of endostatin and interleukin 12 with polyvinylpyrrolidone induces a potent antitumor effect on hepatoma. World J Gastroenterol 2004; 10: 2195–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakashima Y, Yano M, Kobayashi Y, Moriyama S, Sasaki H, Toyama T et al. Endostatin gene therapy on murine lung metastases model utilizing cationic vector-mediated intravenous gene delivery. Gene Therapy 2003; 10: 123–130.

    Article  CAS  PubMed  Google Scholar 

  21. Blezinger P, Yin G, Xie L, Wang J, Matar M, Bishop JS et al. Intravenous delivery of an endostatin gene complexed in cationic lipid inhibits systemic angiogenesis and tumor growth in murine models. Angiogenesis 1999; 3: 205–210.

    Article  CAS  PubMed  Google Scholar 

  22. Chen QR, Kumar D, Stass SA, Mixson AJ . Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 1999; 59: 3308–3312.

    CAS  PubMed  Google Scholar 

  23. Davidoff AM, Nathwani AC . Antiangiogenic gene therapy for cancer treatment. Curr Hematol Rep 2004; 3: 267–273.

    PubMed  Google Scholar 

  24. Dutour A, Monteil J, Paraf F, Charissoux JL, Kaletta C, Sauer B et al. Endostatin cDNA/Cationic liposome complexes as a promising therapy to prevent lung metastases in osteosarcoma: study in a human-like rat orthotopic tumor. Mol Ther 2005; 11: 311–319.

    Article  CAS  PubMed  Google Scholar 

  25. Hong SY, Lee MH, Kim KS, Jung HC, Roh JK, Hyung WJ et al. Adeno-associated virus mediated endostatin gene therapy in combination with topoisomerase inhibitor effectively controls liver tumor in mouse model. World J Gastroenterol 2004; 10: 1191–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Indraccolo S . Undermining tumor angiogenesis by gene therapy: an emerging field. Curr Gene Ther 2004; 4: 297–308.

    Article  CAS  PubMed  Google Scholar 

  27. Regulier E, Paul S, Marigliano M, Kintz J, Poitevin Y, Ledoux C et al. Adenovirus-mediated delivery of antiangiogenic genes as an antitumor approach. Cancer Gene Ther 2001; 8: 45–54.

    Article  CAS  PubMed  Google Scholar 

  28. Shi W, Teschendorf C, Muzyczka N, Siemann DW . Gene therapy delivery of endostatin enhances the treatment efficacy of radiation. Radiother Oncol 2003; 66: 1–9.

    Article  CAS  PubMed  Google Scholar 

  29. Subramanian IV, Ghebre R, Ramakrishnan S . Adeno-associated virus-mediated delivery of a mutant endostatin suppresses ovarian carcinoma growth in mice. Gene Therpy 2005; 12: 30–38.

    Article  CAS  Google Scholar 

  30. Sun X, Qiao H, Jiang H, Zhi X, Liu F, Wang J et al. Intramuscular delivery of antiangiogenic genes suppresses secondary metastases after removal of primary tumors. Cancer Gene Ther 2005; 12: 35–45.

    Article  CAS  PubMed  Google Scholar 

  31. Szala S, Szary J, Cichon T, Sochanik A . Antiangiogenic gene therapy in inhibition of metastasis. Acta Biochim Pol 2002; 49: 313–321.

    CAS  PubMed  Google Scholar 

  32. Wang L, Schmitz V, Perez-Mediavilla A, Izal I, Prieto J, Qian C . Suppression of angiogenesis and tumor growth by adenoviral-mediated gene transfer of pigment epithelium-derived factor. Mol Ther 2003; 8: 72–79.

    Article  CAS  PubMed  Google Scholar 

  33. Yano M, Nakashima Y, Kobayashi Y, Mizuno K, Konishi A, Sasaki H et al. Endostatin gene transfection using a cationic lipid: advantages of transfection before tumor cell inoculation and repeated transfection. Cancer Gene Ther 2004; 11: 354–362.

    Article  CAS  PubMed  Google Scholar 

  34. Thurston G, McLean JW, Rizen M, Baluk P, Haskell A, Murphy TJ et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 1998; 101: 1401–1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eichhorn ME, Strieth S, Krasnici S, Sauer B, Teifel M, Michaelis U et al. Protamine enhances uptake of cationic liposomes in angiogenic microvessels. Angiogenesis 2004; 7: 133–141.

    Article  CAS  PubMed  Google Scholar 

  36. Dow SW, Fradkin LG, Liggitt DH, Willson AP, Heath TD, Potter TA . Lipid–DNA complexes induce potent activation of innate immune responses and antitumor activity when administered intravenously. J Immunol 1999; 163: 1552–1561.

    CAS  PubMed  Google Scholar 

  37. Whitmore MM, Li S, Falo Jr L, Huang L . Systemic administration of LPD prepared with CpG oligonucleotides inhibits the growth of established pulmonary metastases by stimulating innate and acquired antitumor immune responses. Cancer Immunol Immunother 2001; 50: 503–514.

    Article  CAS  PubMed  Google Scholar 

  38. Siders WM, Vergillis K, Johnson C, Scheule RK, Kaplan JM . Tumor treatment with complexes of cationic lipid and noncoding plasmid DNA results in the induction of cytotoxic T cells and systemic tumor elimination. Mol Ther 2002; 6: 519–527.

    Article  CAS  PubMed  Google Scholar 

  39. Withrow SJ . Soft tissue sarcomas. Vet Q 1998; 20 (Suppl 1): S16–S17.

    Article  PubMed  Google Scholar 

  40. Rassnick KM . Medical management of soft tissue sarcomas. Vet Clin N Am Small Anim Pract 2003; 33: 517–531.

    Article  Google Scholar 

  41. Ettinger SN . Principles of treatment for soft-tissue sarcomas in the dog. Clin Tech Small Anim Pract 2003; 18: 118–122.

    Article  PubMed  Google Scholar 

  42. Dow S, Elmslie R, Kurzman I, Macewen G, Pericle F, Liggitt D . Phase I study of liposome-DNA complexes encoding the interleukin-2 gene in dogs with osteosarcoma lung metastases. Hum Gene Ther 2005; 16 (8): 937–946.

    Article  CAS  PubMed  Google Scholar 

  43. Fairman J, Roche L, Pieslak I, Lay M, Corson S, Fox E et al. Quantitative RT-PCR to evaluate in vivo expression of multiple transgenes using a common intron. Biotechniques 1999; 27: 566–570, 572–564.

    Article  CAS  PubMed  Google Scholar 

  44. Liu Y, Mounkes LC, Liggitt HD, Brown CS, Solodin I, Heath TD et al. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol 1997; 15: 167–173.

    Article  CAS  PubMed  Google Scholar 

  45. Dow SW, Elmslie RE, Fradkin LG, Liggitt DH, Heath TD, Willson AP et al. Intravenous cytokine gene delivery by lipid-DNA complexes controls the growth of established lung metastases. Hum Gene Ther 1999; 10: 2961–2972.

    Article  CAS  PubMed  Google Scholar 

  46. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E et al. Genes expressed in human tumor endothelium. Science 2000; 289: 1197–1202.

    Article  CAS  PubMed  Google Scholar 

  47. Scheidegger P, Weiglhofer W, Suarez S, Kaser-Hotz B, Steiner R, Ballmer-Hofer K et al. Vascular endothelial growth factor (VEGF) and its receptors in tumor-bearing dogs. Biol Chem 1999; 380: 1449–1454.

    Article  CAS  PubMed  Google Scholar 

  48. Clifford CA, Hughes D, Beal MW, Henry CJ, Drobatz KJ, Sorenmo KU . Vascular endothelial growth factor concentrations in body cavity effusions in dogs. J Vet Intern Med 2002; 16: 164–168.

    Article  PubMed  Google Scholar 

  49. Allen DK, Waters DJ, Knapp DW, Kuczek T . High urine concentrations of basic fibroblast growth factor in dogs with bladder cancer. J Vet Intern Med 1996; 10: 231–234.

    Article  CAS  PubMed  Google Scholar 

  50. Whitmore M, Li S, Huang L . LPD lipopolyplex initiates a potent cytokine response and inhibits tumor growth. Gene Therapy 1999; 6: 1867–1875.

    Article  CAS  PubMed  Google Scholar 

  51. Lesoon-Wood LA, Kim WH, Kleinman HK, Weintraub BD, Mixson AJ . Systemic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice. Hum Gene Ther 1995; 6: 395–405.

    Article  CAS  PubMed  Google Scholar 

  52. Koski GK, Czerniecki BJ . Combining innate immunity with radiation therapy for cancer treatment. Clin Cancer Res 2005; 11: 7–11.

    CAS  PubMed  Google Scholar 

  53. Mason KA, Ariga H, Neal R, Valdecanas D, Hunter N, Krieg AM et al. Targeting toll-like receptor 9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin Cancer Res 2005; 11: 361–369.

    CAS  PubMed  Google Scholar 

  54. Milas L, Mason KA, Ariga H, Hunter N, Neal R, Valdecanas D et al. CpG oligodeoxynucleotide enhances tumor response to radiation. Cancer Res 2004; 64: 5074–5077.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of Dr David Vail, Ms Mary Johnson, Ms Julie Willer with these studies. These studies were supported by grants from the NIH (CA86224-01) and from the Morris Animal Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Dow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamstock, D., Guth, A., Elmslie, R. et al. Liposome–DNA complexes infused intravenously inhibit tumor angiogenesis and elicit antitumor activity in dogs with soft tissue sarcoma. Cancer Gene Ther 13, 306–317 (2006). https://doi.org/10.1038/sj.cgt.7700895

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700895

Keywords

This article is cited by

Search

Quick links