Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA through the PI3K/AKT/p53 axis

Abstract

Gastrointestinal toxicity is the primary limiting factor in abdominal and pelvic radiotherapy, but has no effective treatment currently. We recently showed a critical role of the BH3-only protein p53 upregulated modulator of apoptosis (PUMA) in acute radiation-induced GI damage and GI syndrome in mice. Growth factors such as insulin-like growth factor 1 (IGF-1) and basic fibroblast growth factor (bFGF) have been shown to protect against radiation-induced intestinal injury, although the underlying mechanisms remain to be identified. We report here the suppression of PUMA through the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/p53 axis in the intestinal stem cells as a novel molecular mechanism of growth factor-mediated intestinal radioprotection. IGF-1 or bFGF impaired radiation-induced apoptosis and the expression of PUMA and p53 in the crypt cells and intestinal stem cells. Using colonic epithelial cells that undergo PUMA-dependent and radiation-induced apoptosis, we found that a PI3K inhibitor, dominant-negative PI3K or Mdm2 antagonist restored the induction of PUMA, p53 and apoptosis in the presence of growth factors. In contrast, overexpression of AKT suppressed the induction of PUMA and p53 by radiation. Furthermore, inhibiting PI3K or activating p53 abrogated growth factor-mediated suppression of apoptosis and PUMA expression in the intestinal crypts and stem cells after radiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AKT:

protein kinase B

bFGF:

basic fibroblast growth factor

IGF-1:

insulin-like growth factor 1

ISCs:

intestinal stem cells

JNK:

c-Jun N-terminal kinase

KO:

knockout

MAPK:

mitogen-activated protein kinase

PBS:

phosphate-buffered saline

PI3K:

phosphoinositide 3-kinase

PUMA:

p53 upregulated modulator of apoptosis

TUNEL:

terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end labeling

WT:

wildtype

References

  • Adams JM, Cory S . (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26: 1324–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449: 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  • Booth D, Potten CS . (2001). Protection against mucosal injury by growth factors and cytokines. J Natl Cancer Inst Monogr 29: 16–20.

    Article  CAS  Google Scholar 

  • Bouleau S, Parvu-Ferecatu I, Rodriguez-Enfedaque A, Rincheval V, Grimal H, Mignotte B et al. (2007). Fibroblast growth factor 1 inhibits p53-dependent apoptosis in PC12 cells. Apoptosis 12: 1377–1387.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Butt AJ, Firth SM, Baxter RC . (1999). The IGF axis and programmed cell death. Immunol Cell Biol 77: 256–262.

    Article  CAS  PubMed  Google Scholar 

  • Ch'ang HJ, Maj JG, Paris F, Xing HR, Zhang J, Truman JP et al. (2005). ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med 11: 484–490.

    Article  CAS  PubMed  Google Scholar 

  • Clarke AR, Jones N, Pryde F, Adachi Y, Sansom OJ . (2007). 53BP1 deficiency in intestinal enterocytes does not alter the immediate response to ionizing radiation, but leads to increased nuclear area consistent with polyploidy. Oncogene 26: 6349–6355.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs SY, Adler V, Pincus MR, Ronai Z . (1998). MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci USA 95: 10541–10546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George RJ, Sturmoski MA, May R, Sureban SM, Dieckgraefe BK, Anant S et al. (2009). Loss of p21Waf1/Cip1/Sdi1 enhances intestinal stem cell survival following radiation injury. Am J Physiol Gastrointest Liver Physiol 296: G245–G254.

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M . (2002). Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21: 1299–1303.

    Article  CAS  PubMed  Google Scholar 

  • Gu Q, Wang D, Wang X, Peng R, Liu J, Jiang T et al. (2004). Basic fibroblast growth factor inhibits radiation-induced apoptosis of HUVECs. I. The PI3K/AKT pathway and induction of phosphorylation of BAD. Radiat Res 161: 692–702.

    Article  CAS  PubMed  Google Scholar 

  • Gulati AS, Ochsner SA, Henning SJ . (2008). Molecular properties of side population-sorted cells from mouse small intestine. Am J Physiol Gastrointest Liver Physiol 294: G286–G294.

    Article  CAS  PubMed  Google Scholar 

  • Han J, Flemington C, Houghton AB, Gu Z, Zambetti GP, Lutz RJ et al. (2001). Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci USA 98: 11318–11323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houchen CW, George RJ, Sturmoski MA, Cohn SM . (1999). FGF-2 enhances intestinal stem cell survival and its expression is induced after radiation injury. Am J Physiol 276: G249–G258.

    CAS  PubMed  Google Scholar 

  • Ishizuka S, Martin K, Booth C, Potten CS, de Murcia G, Burkle A et al. (2003). Poly(ADP-ribose) polymerase-1 is a survival factor for radiation-exposed intestinal epithelial stem cells in vivo. Nucleic Acids Res 31: 6198–6205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J et al. (2003). Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4: 321–328.

    Article  CAS  PubMed  Google Scholar 

  • Katoh M . (2006). FGF signaling network in the gastrointestinal tract (review). Int J Oncol 29: 163–168.

    CAS  PubMed  Google Scholar 

  • Kohli M, Yu J, Seaman C, Bardelli A, Kinzler KW, Vogelstein B et al. (2004). SMAC/Diablo-dependent apoptosis induced by nonsteroidal antiinflammatory drugs (NSAIDs) in colon cancer cells. Proc Natl Acad Sci USA 101: 16897–16902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komarova EA, Kondratov RV, Wang K, Christov K, Golovkina TV, Goldblum JR et al. (2004). Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene 23: 3265–3271.

    Article  CAS  PubMed  Google Scholar 

  • Korsmeyer SJ . (1999). BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59: 1693s–11700s.

    CAS  PubMed  Google Scholar 

  • Labi V, Erlacher M, Kiessling S, Villunger A . (2006). BH3-only proteins in cell death initiation, malignant disease and anticancer therapy. Cell Death Differ 13: 1325–1338.

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ, Feng Z, Mak TW, You H, Jin S . (2006). Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 20: 267–275.

    Article  CAS  PubMed  Google Scholar 

  • Merritt AJ, Potten CS, Kemp CJ, Hickman JA, Balmain A, Lane DP et al. (1994). The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res 54: 614–617.

    CAS  PubMed  Google Scholar 

  • Ming L, Sakaida T, Yue W, Jha A, Zhang L, Yu J . (2008). Sp1 and p73 activate PUMA following serum starvation. Carcinogenesis 29: 1878–1884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano K, Vousden KH . (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7: 683–694.

    Article  CAS  PubMed  Google Scholar 

  • Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D et al. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293: 293–297.

    Article  CAS  PubMed  Google Scholar 

  • Potten CS . (2004). Radiation, the ideal cytotoxic agent for studying the cell biology of tissues such as the small intestine. Radiat Res 161: 123–136.

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, Carson-Walter EB, Liu H, Epperly M, Greenberger JS, Zambetti GP et al. (2008). PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2: 576–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Prieto R, Rojas JM, Taya Y, Gutkind JS . (2000). A role for the p38 mitogen-acitvated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer Res 60: 2464–2472.

    CAS  PubMed  Google Scholar 

  • Sangiorgi E, Capecchi MR . (2008). Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40: 915–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shangary S, Wang S . (2009). Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49: 223–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaulian E, Resnitzky D, Shifman O, Blandino G, Amsterdam A, Yayon A et al. (1997). Induction of Mdm2 and enhancement of cell survival by bFGF. Oncogene 15: 2717–2725.

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Ming L, Thomas SM, Wang Y, Chen ZG, Ferris RL et al. (2009). PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells. Oncogene 18: 2348–2357.

    Article  Google Scholar 

  • Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ et al. (2003). p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 302: 1036–1038.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  • Waldman T, Kinzler KW, Vogelstein B . (1995). p21 is necessary for the p53-mediated G(1) arrest in human cancer cells. Cancer Res 55: 5187–5190.

    CAS  PubMed  Google Scholar 

  • Wang P, Yu J, Zhang L . (2007). The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage. Proc Natl Acad Sci USA 104: 4054–4059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins HR, Ohneda K, Keku TO, D'Ercole AJ, Fuller CR, Williams KL et al. (2002). Reduction of spontaneous and irradiation-induced apoptosis in small intestine of IGF-I transgenic mice. Am J Physiol Gastrointest Liver Physiol 283: G457–G464.

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Qiu W, Wang P, Yu H, Cheng T, Zambetti GP et al. (2007). p53 independent induction of PUMA mediates intestinal apoptosis in response to ischaemia-reperfusion. Gut 56: 645–654.

    Article  CAS  PubMed  Google Scholar 

  • Yang JY, Xia W, Hu MC . (2006). Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int J Oncol 29: 643–648.

    PubMed  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M . (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345–347.

    Article  CAS  PubMed  Google Scholar 

  • You H, Pellegrini M, Tsuchihara K, Yamamoto K, Hacker G, Erlacher M et al. (2006). FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J Exp Med 203: 1657–1663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Wang P, Ming L, Wood MA, Zhang L . (2007). SMAC/Diablo mediates the proapoptotic function of PUMA by regulating PUMA-induced mitochondrial events. Oncogene 26: 4189–4198.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L . (2003). PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA 100: 1931–1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Zhang L . (2004). Apoptosis in human cancer cells. Curr Opin Oncol 16: 19–24.

    Article  PubMed  Google Scholar 

  • Yu J, Zhang L . (2005). The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331: 851–858.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang L . (2008). PUMA, a potent killer with or without p53. Oncogene 27 (Suppl 1): S71–S83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B . (2001). PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7: 673–682.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B . (1999). Identification and classification of p53-regulated genes. Proc Natl Acad Sci USA 96: 14517–14522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT et al. (2009). Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457: 603–607.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank other members of our labs for helpful discussion and advice and Ms Hong Tao Liu for breeding mice. This work is supported in part by NIH grants CA106348, CA121105, and American Cancer Society grant RSG-07-156-01-CNE (L Zhang), and NIH grants CA129829, UO1-DK085570, U19-A1068021 (pilot project), and those from ACGT and FAMRI (J Yu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Yu.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, W., Leibowitz, B., Zhang, L. et al. Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA through the PI3K/AKT/p53 axis. Oncogene 29, 1622–1632 (2010). https://doi.org/10.1038/onc.2009.451

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.451

Keywords

This article is cited by

Search

Quick links