Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PAUF functions in the metastasis of human pancreatic cancer cells and upregulates CXCR4 expression

Abstract

Pancreatic cancer is characterized by early metastatic spread, but the process of tumor cell dissemination is largely unknown. In this study we show that the soluble protein pancreatic adenocarcinoma upregulated factor (PAUF) has an important role in the metastasis and progression of the disease. Variations in the level of PAUF, either by overexpression or knockdown, resulted in altered migration, invasion and proliferation capacity of pancreatic cancer cells. Moreover, depletion of PAUF in metastatic cells dramatically abrogated the spread of the cells to distant organs in an orthotopic xenograft mouse model. PAUF elicited the activation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and AKT intracellular signaling cascades and consequently their downstream transcription factors in an autocrine manner. Genome-wide expression analysis revealed that C-X-C chemokine receptor type 4 (CXCR4) expression was induced by PAUF overexpression but was repressed by PAUF knockdown. The PAUF-mediated increase in cancer cell motility was attenuated by the CXCR4 inhibitor, AMD3100, or by anti-CXCR4 antibody. Furthermore, immunohistochemical analysis of pancreatic tumor tissues clearly showed a significant positive correlation between PAUF and CXCR4 expression. Collectively, these findings indicate that PAUF enhances the metastatic potential of pancreatic cancer cells, at least in part, by upregulating CXCR4 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aikawa T, Whipple CA, Lopez ME, Gunn J, Young A, Lander AD et al. (2008). Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. J Clin Invest 118: 89–99.

    Article  CAS  PubMed  Google Scholar 

  • Anjum R, Blenis J . (2008). The RSK family of kinases: emerging roles in cellular signaling. Nature Rev Mol Cell Biol 9: 747–758.

    Article  CAS  Google Scholar 

  • Bachelder RE, Wendt MA, Mercurio AM . (2002). Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62: 7203–7206.

    CAS  PubMed  Google Scholar 

  • Balkwill F . (2004). Cancer and the chemokine network. Nature Rev Cancer 4: 40–50.

    Article  Google Scholar 

  • Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N et al. (2009). The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res 69: 775–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benovic JL, Marchese A . (2004). A new key in breast cancer metastasis. Cancer Cell 6: 429–430.

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Ruoslahti E . (2004). Metadherin, a cell surface protein in breast tumors that mediate lung metastasis. Cancer Cell 5: 365–374.

    Article  CAS  PubMed  Google Scholar 

  • Burger JA, Kipps TJ . (2006). CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107: 1761–1767.

    Article  CAS  PubMed  Google Scholar 

  • Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A et al. (2008). Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118: 3065–3074.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D . (1998). Cluster analysis and display of genome-wide expression pattern. Proc Natl Acad Sci USA 95: 14863–14868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friess H, Yamanaka Y, Büchler M, Ebert M, Beger HG, Gold LI et al. (1993). Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 105: 1846–1856.

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Brigstock DR . (2005). Connective tissue growth factor (CCN2) in rat pancreatic stellate cell function: integrin α(V)β(1) as a novel CCN2 receptor. Gastroenterology 129: 1019–1030.

    Article  CAS  PubMed  Google Scholar 

  • Ghaneh P, Costello E, Neoptolemos JP . (2008). Biology and maintenance of pancreatic cancer. Gut 56: 1134–1152.

    Google Scholar 

  • Grotendorst GR, Okochi H, Hayashi N . (1996). A novel transforming growth factor β response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 7: 469–480.

    CAS  PubMed  Google Scholar 

  • Helbig G, Christopherson KW, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD et al. (2003). NF-κB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278: 21631–21638.

    Article  CAS  PubMed  Google Scholar 

  • Hermann PC, Huber SL, Herrier T, Alcher A, Ellwart JW, Guba M et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1: 313–323.

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka S, Watanabe A, Aburatani H, Maru Y . (2006). Tumor-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biol 8: 1369–1375.

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka S, Watanabe A, Sakura Y, Akashi-Takamura S, Ishibashi S, Miyake K et al. (2008). The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biol 10: 1349–1355.

    Article  CAS  PubMed  Google Scholar 

  • Hsu T, Trojanowska M, Watson DK . (2004). Ets proteins in biological control and cancer. J Cell Biochem 91: 896–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Jacobson K, Schaller MD . (2004). MAP kinases and cell migration. J Cell Sci 117: 4619–4628.

    Article  CAS  PubMed  Google Scholar 

  • Jones DH, Nakashima T, Sanchez OH, Kozieralzki I, Komarova SV, Sarosi I et al. (2006). Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440: 692–696.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al. (2005). VEGFR1-positive haematopoeitic bone marrow progenitors initiate the pre-metastatic niche. Nature 438: 820–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karin M, Gallagher E . (2005). From JNK to pay dirt: Jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57: 283–295.

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Lee Y, Jung D, Park KH, Park JY, Gang J et al. (2009). PAUF, a novel up-regulated secretory protein in pancreatic ductal adenocarcinoma. Cancer Sci 100: 828–836.

    Article  CAS  PubMed  Google Scholar 

  • Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H et al. (2008). Targeting AKT/mTOR and ERK/MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 118: 3051–3064.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koizumi K, Hojo S, Akashi T, Yasumoto K, Saiki I . (2007). Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response. Cancer Sci 98: 1652–1658.

    Article  CAS  PubMed  Google Scholar 

  • Korc M . (2007). Pancreatic cancer associated stroma production. Am J Surg 194: s84–s86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchier M, Beger HG . (1992). Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Invest 90: 1352–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshiba T, Hosatoni R, Miyamoto Y, Ida J, Tsuji S, Nakajima S et al. (2000). Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res 6: 3530–3535.

    CAS  PubMed  Google Scholar 

  • Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M et al. (2004). Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6: 459–469.

    Article  CAS  PubMed  Google Scholar 

  • Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G . (1975). Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 15: 741–747.

    Article  CAS  PubMed  Google Scholar 

  • Lopez T, Hanahan D . (2002). Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 1: 339–353.

    Article  CAS  PubMed  Google Scholar 

  • Maitra A, Hruban RH . (2008). Pancreatic cancer. Annu Rev Pathol Mech Dis 3: 157–188.

    Article  CAS  Google Scholar 

  • Marchesi F, Monti P, Leone BE, Zerbi A, Vecchi A, Piemonti L et al. (2004). Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res 64: 8420–8427.

    Article  CAS  PubMed  Google Scholar 

  • Marshall J . (2006). Clinical implications of the mechanism of epidermal growth factor receptor inhibitors. Cancer 107: 1207–1218.

    Article  CAS  PubMed  Google Scholar 

  • Mashino K, Sadanaga N, Yamaguchi H, Tanaka F, Ohta M, Shibuta K et al. (2002). Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 62: 2937–2941.

    CAS  PubMed  Google Scholar 

  • Matteucci E, Locati M, Desiderio MA . (2005). Hepatocyte growth factor enhances CXCR4 expression favoring breast cancer cell invasiveness. Exp Cell Res 310: 176–185.

    Article  CAS  PubMed  Google Scholar 

  • McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertland FE et al. (2006). Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul 46: 249–279.

    Article  CAS  PubMed  Google Scholar 

  • Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–56.

    Article  PubMed  Google Scholar 

  • Okada Y, Eibl G, Guha S, Duffy JP, Reber HA, Hines OJ . (2004). Nerve growth factor stimulates MMP-2 expression and activity and increases invasion by human pancreatic cancer cells. Clin Exp Meta 21: 285–292.

    Article  CAS  Google Scholar 

  • Ozawa F, Friess H, Tempia-Caliera A, Kleeff J, Büchler MW . (2001). Growth factors and their receptors in pancreatic cancer. Teratog Carcinog Mutagen 21: 27–44.

    Article  CAS  PubMed  Google Scholar 

  • Reddy KB, Nabha SM, Atanaskova N . (2003). Role of MAP kinase in tumor progression and invasion. Cancer Meta Rev 22: 395–403.

    Article  CAS  Google Scholar 

  • Saur D, Seidler B, Schneider G, Algul H, Beck R, Senekowitsch-Schmidtke R et al. (2005). CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology 129: 1237–1250.

    Article  CAS  PubMed  Google Scholar 

  • Schoumacher RA, Ram J, Iannuzzi MC, Bradbury NA, Wallace RW, Hon CT et al. (1990). A cystic fibrosis pancreatic adenocarcinoma cell line. Proc Natl Acad Sci USA 87: 4012–4016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W . (2003). Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumor suppressor pVHL. Nature 425: 307–311.

    Article  CAS  PubMed  Google Scholar 

  • Sung B, Jhurani S, Ahn KS, Mastuo Y, Yi T, Guha S et al. (2008). Zerumbone down-regulates chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Res 68: 8938–8944.

    Article  CAS  PubMed  Google Scholar 

  • Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK . (2002). Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62: 1832–1837.

    CAS  PubMed  Google Scholar 

  • Tong Z, Kunnumakkara AB, Wang H, Matsuo Y, Diagaradjane P, Harikumar KB et al. (2008). Neutrophil gelatinase-associated lipocalin: a novel suppressor of invasion and angiogenesis in pancreatic cancer. Cancer Res 68: 6100–6108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Ma Q, Liu Q, Yu H, Zhao L, Shen S et al. (2008). Blockade of SDF-1/CXCR4 signalling inhibits pancreatic cancer progression in vitro via inactivation of canonical Wnt pathway. British J Cancer 99: 1695–1703.

    Article  CAS  Google Scholar 

  • Wehler T, Wolfert F, Schimanski CC, Gockel I, Herr W, Biesterfeld S et al. (2006). Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease. Oncol Rep 16: 1159–1164.

    CAS  PubMed  Google Scholar 

  • Zagzag D, Krishnamachary B, Yee H, Okuyama H, Chirlboga L, All MA et al. (2005). Stromal cell-derived factor-1 alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 65: 6178–6188.

    Article  CAS  PubMed  Google Scholar 

  • Zhou BP, Hu MC, Miller SA, Yu Z, Xia W, Lin SY et al. (2000). HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-κB pathway. J Biol Chem 275: 8027–8031.

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A . (2006). Chemokines and cancer. Int J Cancer 119: 2026–2029.

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A . (2008). New insights on the role of CXCR4 in cancer metastasis. J Pathol 215: 211–213.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the 21st Century Frontier Functional Human Genome Project of the Ministry of Education, Science and Technology, Korea. We thank CK Jung and MG Kang for statistical analysis, SH Kim for the luciferase reporter plasmids and HJ Hong for critiques of our work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D-S Lim or S S Koh.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y., Kim, S., Park, H. et al. PAUF functions in the metastasis of human pancreatic cancer cells and upregulates CXCR4 expression. Oncogene 29, 56–67 (2010). https://doi.org/10.1038/onc.2009.298

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.298

Keywords

This article is cited by

Search

Quick links