Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fatigue as a symptom or comorbidity of neurological diseases

Key Points

  • Fatigue is complex and can occur as a primary or secondary symptom as well as a comorbidity of neurological disease; multiple types can coexist in the same patient

  • Disentangling the origin and nature of fatigue in patients with neurological diseases is challenging and often fails to achieve an unambiguous assignment of fatigue

  • Fatigue can be characterized by standardized self-report questionnaires and fatigability testing, which can help to determine the impact of fatigue on patients' daily life

  • Assessments of fatigue can help to guide pharmacological treatment decision-making even in the absence of convincing evidence-based strategies

  • Nonpharmacological strategies, such as mindfulness-based stress reduction, cooling, yoga, exercise and cognitive rehabilitation, can help to manage fatigue in patients with neurological diseases

Abstract

Fatigue, best described as an overwhelming feeling of tiredness and exhaustion, occurs in the context of various neurological diseases. The high prevalence of fatigue as either a symptom or a comorbidity of neurological disease must be taken seriously, as fatigue interferes with patients' activities of daily living, has a remarkable negative impact on quality of life, and is a major reason for early retirement. The tremendous consequences of fatigue are consistent across neurological diseases, as is the uncertainty concerning its underlying pathophysiological mechanisms. Inconsistencies in defining fatigue contribute to the present situation, in which fatigue represents one of the least-studied and least- understood conditions. Tools for assessing fatigue abound, but few can be recommended for clinical or research use. To make matters worse, evidence-based pharmacological treatment options are scarce. However, non-pharmacological approaches are currently promising and likely to become of increasing importance. In sum, fatigue is challenging for both health-care professionals and patients. The present article aims to provide a comprehensive review of the literature on fatigue in neurological disease, and to reveal its complexity, as well as weaknesses in the concept of fatigue itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual models, causes and consequences of fatigue in neurological disease.

Similar content being viewed by others

References

  1. Lagrange, F. Physiologie des Exercices du Corps (Félix Alcan, 1888).

    Google Scholar 

  2. Beard, G. M. American Nervousness, its Causes and Consequences; A Supplement to Nervous Exhaustion (Neurasthenia) (W. Wood & Company, 1881).

    Google Scholar 

  3. Beard, G. M. A Practical Treatise on Nervous Exhaustion, (Neurasthenia); Its Symptoms, Nature, Sequences, Treatment. (W. Wood & Company,1880).

    Google Scholar 

  4. Dubois, P. Die Psychoneurosen und ihre Psychische Behandlung (Francke, 1905).

    Google Scholar 

  5. Dittner, A. J., Wessely, S. C. & Brown, R. G. The assessment of fatigue: a practical guide for clinicians and researchers. J. Psychosom. Res. 56, 157–170 (2004).

    CAS  PubMed  Google Scholar 

  6. Chaudhuri, A. & Behan, P. O. Fatigue in neurological disorders. Lancet 363, 978–988 (2004).

    PubMed  Google Scholar 

  7. Kluger, B. M., Krupp, L. B. & Enoka, R. M. Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology 80, 409–416 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Lou, J.-S. et al. Levodopa improves physical fatigue in Parkinson's disease: a double-blind, placebo-controlled, crossover study. Mov. Disord. 18, 1108–1114 (2003).

    PubMed  Google Scholar 

  9. Bailey, A., Channon, S. & Beaumont, J. G. The relationship between subjective fatigue and cognitive fatigue in advanced multiple sclerosis. Mult. Scler. 13, 73–80 (2007).

    CAS  PubMed  Google Scholar 

  10. Krupp, L. B. & Elkins, L. E. Fatigue and declines in cognitive functioning in multiple sclerosis. Neurology 55, 934–939 (2000).

    CAS  PubMed  Google Scholar 

  11. Roelcke, U. et al. Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology 48, 1566–1571 (1997).

    CAS  PubMed  Google Scholar 

  12. Filippi, M. et al. Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage 15, 559–567 (2002).

    CAS  PubMed  Google Scholar 

  13. Heesen, C. et al. Fatigue in multiple sclerosis: an example of cytokine mediated sickness behaviour? J. Neurol. Neurosurg. Psychiatry 77, 34–39 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gottschalk, M. et al. Fatigue and regulation of the hypothalamo-pituitary-adrenal axis in multiple sclerosis. Arch. Neurol. 62, 277–280 (2005).

    PubMed  Google Scholar 

  15. Téllez, N. et al. Fatigue in progressive multiple sclerosis is associated with low levels of dehydroepiandrosterone. Mult. Scler. 12, 487–494 (2006).

    PubMed  Google Scholar 

  16. Veauthier, C. et al. Treatment of sleep disorders may improve fatigue in multiple sclerosis. Clin. Neurol. Neurosurg. 115, 1826–1830 (2013).

    PubMed  Google Scholar 

  17. Veauthier, C. et al. Fatigue in multiple sclerosis is closely related to sleep disorders: a polysomnographic cross-sectional study. Mult. Scler. 17, 613–622 (2011).

    CAS  PubMed  Google Scholar 

  18. Stanton, B. R., Barnes, F. & Silber, E. Sleep and fatigue in multiple sclerosis. Mult. Scler. 12, 481–486 (2006).

    CAS  PubMed  Google Scholar 

  19. Kroenke, K., Wood, D. R., Mangelsdorff, A. D., Meier, N. J. & Powell, J. B. Chronic fatigue in primary care. prevalence, patient characteristics, and outcome. JAMA 260, 929–934 (1988).

    CAS  PubMed  Google Scholar 

  20. Taylor, R. R., Jason, L. A. & Jahn, S. C. Chronic fatigue and sociodemographic characteristics as predictors of psychiatric disorders in a community-based sample. Psychosom. Med. 65, 896–901 (2003).

    PubMed  Google Scholar 

  21. Harvey, S. B., Wadsworth, M., Wessely, S. & Hotopf, M. The relationship between prior psychiatric disorder and chronic fatigue: evidence from a national birth cohort study. Psychol. Med. 38, 933–940 (2008).

    CAS  PubMed  Google Scholar 

  22. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Publishing, 2013).

  23. Corfield, E. C., Martin, N. G. & Nyholt, D. R. Co-occurrence and symptomatology of fatigue and depression. Compr. Psychiatry 71, 1–10 (2016).

    PubMed  Google Scholar 

  24. Addington, A. M., Gallo, J. J., Ford, D. E. & Eaton, W. W. Epidemiology of unexplained fatigue and major depression in the community: the Baltimore ECA follow-up, 1981–1994. Psychol. Med. 31, 1037–1044 (2001).

    CAS  PubMed  Google Scholar 

  25. Hanley, N. S. & Van de Kar, L. D. Serotonin and the neuroendocrine regulation of the hypothalamic–pituitary–adrenal axis in health and disease. Vitam. Horm. 66, 189–255 (2003).

    CAS  PubMed  Google Scholar 

  26. Qamhawi, Z. et al. Clinical correlates of raphe serotonergic dysfunction in early Parkinson's disease. Brain 138, 2964–2973 (2015).

    PubMed  Google Scholar 

  27. Kos, D., Kerckhofs, E., Nagels, G., D'hooghe, M. B. & Ilsbroukx, S. Origin of fatigue in multiple sclerosis: review of the literature. Neurorehabil. Neural Repair 22, 91–100 (2007).

    PubMed  Google Scholar 

  28. Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Harrison, N. A. et al. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol. Psychiatry 66, 407–414 (2009).

    PubMed  PubMed Central  Google Scholar 

  30. Hanken, K., Eling, P. & Hildebrandt, H. The representation of inflammatory signals in the brain — a model for subjective fatigue in multiple sclerosis. Front. Neurol. 5, 264 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. Veauthier, C. The Berlin treatment algorithm. Recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue. EPMA J. 7, 25 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Gold, S. M. et al. Endocrine and immune substrates of depressive symptoms and fatigue in multiple sclerosis patients with comorbid major depression. J. Neurol. Neurosurg. Psychiatry 82, 814–818 (2011).

    PubMed  Google Scholar 

  33. Powell, D. J. H., Moss-Morris, R., Liossi, C. & Schlotz, W. Circadian cortisol and fatigue severity in relapsing-remitting multiple sclerosis. Psychoneuroendocrinology 56, 120–131 (2015).

    CAS  PubMed  Google Scholar 

  34. Pellicano, C. et al. Relationship of cortical atrophy to fatigue in patients with multiple sclerosis. Arch. Neurol. 67, 447–453 (2010).

    PubMed  Google Scholar 

  35. Yaldizli, Ö. et al. Fatigue and progression of corpus callosum atrophy in multiple sclerosis. J. Neurol. 258, 2199–2205 (2011).

    PubMed  Google Scholar 

  36. Yaldizli, Ö. et al. The relationship between total and regional corpus callosum atrophy, cognitive impairment and fatigue in multiple sclerosis patients. Mult. Scler. 20, 356–364 (2014).

    PubMed  Google Scholar 

  37. Sander, C. et al. The impact of MS-related cognitive fatigue on future brain parenchymal loss and relapse: a 17-month follow-up study. Front. Neurol. 7, 155 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Sepulcre, J. et al. Fatigue in multiple sclerosis is associated with the disruption of frontal and parietal pathways. Mult. Scler. 15, 337–344 (2008).

    PubMed  Google Scholar 

  39. Pardini, M., Bonzano, L., Mancardi, G. L. & Roccatagliata, L. Frontal networks play a role in fatigue perception in multiple sclerosis. Behav. Neurosci. 124, 329 (2010).

    PubMed  Google Scholar 

  40. Zhang, J.-J. et al. Abnormal resting-state neural activity and connectivity of fatigue in Parkinson's disease. CNS Neurosci. Ther. 23, 241–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pravatà, E. et al. Hyperconnectivity of the dorsolateral prefrontal cortex following mental effort in multiple sclerosis patients with cognitive fatigue. Mult. Scler. 13, 1665–1675 (2016).

    Google Scholar 

  42. Finke, C. et al. Altered basal ganglia functional connectivity in multiple sclerosis patients with fatigue. Mult. Scler. 21, 925–934 (2015).

    CAS  PubMed  Google Scholar 

  43. Ponchel, A., Bombois, S., Bordet, R. & Hénon, H. Factors associated with poststroke fatigue: a systematic review. Stroke Res. Treat. 2015, 347920 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Wu, S., Mead, G., Macleod, M. & Chalder, T. Model of understanding fatigue after stroke. Stroke 46, 893–898 (2015).

    PubMed  Google Scholar 

  45. Derache, N. et al. Fatigue is associated with metabolic and density alterations of cortical and deep gray matter in relapsing–remitting-multiple sclerosis patients at the earlier stage of the disease: a PET/MR study. Mult. Scler. Relat. Disord. 2, 362–369 (2013).

    PubMed  Google Scholar 

  46. Dobryakova, E., Genova, H. M., DeLuca, J. & Wylie, G. R. The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders. Front. Neurol. 6, 52 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. Krupp, L. B., LaRocca, N. G., Muir-Nash, J. & Steinberg, A. D. The fatigue severity scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Arch. Neurol. 46, 1121–1123 (1989).

    CAS  PubMed  Google Scholar 

  48. Bakshi, R. et al. Fatigue in multiple sclerosis and its relationship to depression and neurologic disability. Mult. Scler. 6, 181–185 (2000).

    CAS  PubMed  Google Scholar 

  49. Flachenecker, P. et al. Fatigue in multiple sclerosis: a comparison of different rating scales and correlation to clinical parameters. Mult. Scler. 8, 523–526 (2002).

    CAS  PubMed  Google Scholar 

  50. Elbers, R. G. et al. Self-report fatigue questionnaires in multiple sclerosis, Parkinson's disease and stroke: a systematic review of measurement properties. Qual. Life Res. 21, 925–944 (2012).

    PubMed  Google Scholar 

  51. Fisk, J. D., Pontefract, A., Ritvo, P. G., Archibald, C. J. & Murray, T. J. The impact of fatigue on patients with multiple sclerosis. Can. J. Neurol. Sci. 21, 9–14 (1994).

    CAS  PubMed  Google Scholar 

  52. Téllez, N. et al. Does the modified fatigue impact scale offer a more comprehensive assessment of fatigue in MS? Mult. Scler. 11, 198–202 (2005).

    PubMed  Google Scholar 

  53. Penner, I. K. et al. The fatigue scale for motor and cognitive functions (FSMC): validation of a new instrument to assess multiple sclerosis-related fatigue. Mult. Scler. 15, 1509–1517 (2009).

    CAS  PubMed  Google Scholar 

  54. Hubacher, M. et al. Assessment of post-stroke fatigue: the fatigue scale for motor and cognitive functions. Eur. Neurol. 67, 377–384 (2012).

    PubMed  Google Scholar 

  55. Liu, X. et al. Increased TH17/TReg ratio in poststroke fatigue. Mediators Inflamm. 2015, 931398 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. McNair, D. M., Droppleman, L. F. & Lorr, M. EdITS Manual for the Profile of Mood States: POMS (EdITS, 1992).

    Google Scholar 

  57. Krupp, L. B., Alvarez, L. A., LaRocca, N. G. & Scheinberg, L. C. Fatigue in multiple sclerosis. Arch. Neurol. 45, 435–437 (1988).

    CAS  PubMed  Google Scholar 

  58. Colosimo, C. et al. Fatigue in MS is associated with specific clinical features. Acta Neurol. Scand. 92, 353–355 (1995).

    CAS  PubMed  Google Scholar 

  59. Comi, G., Leocani, L., Rossi, P. & Colombo, B. Physiopathology and treatment of fatigue in multiple sclerosis. J. Neurol. 248, 174–179 (2001).

    CAS  PubMed  Google Scholar 

  60. Amato, M. P. et al. Quality of life in multiple sclerosis: the impact of depression, fatigue and disability. Mult. Scler. 7, 340–344 (2001).

    CAS  PubMed  Google Scholar 

  61. Flensner, G., Landtblom, A.-M., Söderhamn, O. & Ek, A.-C. Work capacity and health-related quality of life among individuals with multiple sclerosis reduced by fatigue: a cross-sectional study. BMC Public Health 13, 224 (2013).

    PubMed  PubMed Central  Google Scholar 

  62. Multiple Sclerosis Council for Clinical Practice Guidelines. Fatigue and Multiple Sclerosis: Evidence-Based Management Strategies For Fatigue in Multiple Sclerosis (Paralyzed Veterans of America, 1998).

  63. Mills, R. J. & Young, C. A. The relationship between fatigue and other clinical features of multiple sclerosis. Mult. Scler. 17, 604–612 (2011).

    PubMed  Google Scholar 

  64. Veauthier, C. & Paul, F. Fatigue in multiple sclerosis: which patient should be referred to a sleep specialist? Mult. Scler. 18, 248–249 (2012).

    PubMed  Google Scholar 

  65. Veauthier, C. & Paul, F. Sleep disorders in multiple sclerosis and their relationship to fatigue. Sleep Med. 15, 5–14 (2014).

    PubMed  Google Scholar 

  66. Veauthier, C. & Paul, F. Therapy of fatigue in multiple sclerosis: a treatment algorithm [German]. Nervenarzt 87, 1310–1321 (2016).

    CAS  PubMed  Google Scholar 

  67. Mücke, M. et al. Pharmacological treatments for fatigue associated with palliative care. Cochrane Database Syst. Rev. 5, CD006788 (2015).

    Google Scholar 

  68. Asano, M. & Finlayson, M. L. Meta-analysis of three different types of fatigue management interventions for people with multiple sclerosis: exercise, education, and medication. Mult. Scler. Int. 2014, 798285 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. Peuckmann, V., Elsner, F., Krumm, N., Trottenberg, P. & Radbruch, L. Pharmacological treatments for fatigue associated with palliative care. Cochrane Database Syst. Rev. 11, CD006788 (2010).

    Google Scholar 

  70. Tur, C. Fatigue management in multiple sclerosis. Curr. Treat. Options Neurol. 18, 26 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Brenner, P. & Piehl, F. Fatigue and depression in multiple sclerosis: pharmacological and non-pharmacological interventions. Acta Neurol. Scand. 134, 47–54 (2016).

    PubMed  Google Scholar 

  72. Hader, W. et al. A randomized controlled trial of amantadine in fatigue associated with multiple sclerosis. Can. J. Neurol. Sci. 14, 273–278 (1987).

    Google Scholar 

  73. Cohen, R. A. & Fisher, M. Amantadine treatment of fatigue associated with multiple sclerosis. Arch. Neurol. 46, 676–680 (1989).

    CAS  PubMed  Google Scholar 

  74. Ledinek, A. H., Sajko, M. C. & Rot, U. Evaluating the effects of amantadin, modafinil and acetyl-l-carnitine on fatigue in multiple sclerosis — result of a pilot randomized, blind study. Clin. Neurol. Neurosurg. 115 (Suppl. 1), S86–S89 (2013).

    PubMed  Google Scholar 

  75. Geisler, M. W. et al. The effects of amantadine and pemoline on cognitive functioning in multiple sclerosis. Arch. Neurol. 53, 185–188 (1996).

    CAS  PubMed  Google Scholar 

  76. Krupp, L. B. et al. Fatigue therapy in multiple sclerosis: results of a double-blind, randomized, parallel trial of amantadine, pemoline, and placebo. Neurology 45, 1956–1961 (1995).

    CAS  PubMed  Google Scholar 

  77. Murray, T. J. Amantadine therapy for fatigue in multiple sclerosis. Can. J. Neurol. Sci. 12, 251–254 (1985).

    CAS  PubMed  Google Scholar 

  78. Rosenberg, G. A. & Appenzeller, O. Amantadine, fatigue, and multiple sclerosis. Arch. Neurol. 45, 1104–1106 (1988).

    CAS  PubMed  Google Scholar 

  79. Ashtari, F., Fatehi, F., Shaygannejad, V. & Chitsaz, A. Does amantadine have favourable effects on fatigue in Persian patients suffering from multiple sclerosis? Neurol. Neurochir. Pol. 43, 428–432 (2009).

    CAS  PubMed  Google Scholar 

  80. Shaygannejad, V., Janghorbani, M., Ashtari, F. & Zakeri, H. Comparison of the effect of aspirin and amantadine for the treatment of fatigue in multiple sclerosis: a randomized, blinded, crossover study. Neurol. Res. 34, 854–858 (2012).

    CAS  PubMed  Google Scholar 

  81. Pucci, E. et al. Amantadine for fatigue in multiple sclerosis. Cochrane Database Syst. Rev. 1, CD002818 (2007).

    Google Scholar 

  82. Taus, C., Giuliani, G., Pucci, E., D'Amico, R. & Solari, A. Amantadine for fatigue in multiple sclerosis. Cochrane Database Syst. Rev. 2, CD002818 (2003).

    Google Scholar 

  83. Ziemssen, T., Hoffman, J., Apfel, R. & Kern, S. Effects of glatiramer acetate on fatigue and days of absence from work in first-time treated relapsing–remitting multiple sclerosis. Health Qual. Life Outcomes 6, 67 (2008).

    PubMed  PubMed Central  Google Scholar 

  84. Putzki, N., Yaldizli, Ö., Tettenborn, B. & Diener, H. C. Multiple sclerosis associated fatigue during natalizumab treatment. J. Neurol. Sci. 285, 109–113 (2009).

    CAS  PubMed  Google Scholar 

  85. Yildiz, M., Tettenborn, B. & Putzki, N. Multiple sclerosis-associated fatigue during disease-modifying treatment with natalizumab, interferon-β and glatiramer acetate. Eur. Neurol. 65, 231–232 (2011).

    PubMed  Google Scholar 

  86. Iaffaldano, P. et al. Impact of natalizumab on cognitive performances and fatigue in relapsing multiple sclerosis: a prospective, open-label, two years observational study. PLoS ONE 7, e35843 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Svenningsson, A. et al. Natalizumab treatment reduces fatigue in multiple sclerosis. Results from the TYNERGY trial; a study in the real life setting. PLoS ONE 8, e58643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Confavreux, C. et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 247–256 (2014).

    CAS  PubMed  Google Scholar 

  89. Vermersch, P. et al. Teriflunomide versus subcutaneous interferon-β1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. Mult. Scler. 20, 705–716 (2014).

    CAS  PubMed  Google Scholar 

  90. Flensner, G., Ek, A.-C., Söderhamn, O. & Landtblom, A.-M. Sensitivity to heat in MS patients: a factor strongly influencing symptomology — an explorative survey. BMC Neurol. 11, 27 (2011).

    PubMed  PubMed Central  Google Scholar 

  91. Schwid, S. R. et al. A randomized controlled study of the acute and chronic effects of cooling therapy for MS. Neurology 60, 1955–1960 (2003).

    PubMed  Google Scholar 

  92. Miller, E., Kostka, J., Włodarczyk, T. & Dugué, B. Whole-body cryostimulation (cryotherapy) provides benefits for fatigue and functional status in multiple sclerosis patients. A case–control study. Acta Neurol. Scand. 134, 420–426 (2016).

    CAS  PubMed  Google Scholar 

  93. Sutherland, G., Andersen, M. B. & Morris, T. Relaxation and health-related quality of life in multiple sclerosis: the example of autogenic training. J. Behav. Med. 28, 249–256 (2005).

    PubMed  Google Scholar 

  94. Dayapoğlu, N. & Tan, M. Evaluation of the effect of progressive relaxation exercises on fatigue and sleep quality in patients with multiple sclerosis. J. Altern. Complement. Med. 18, 983–987 (2012).

    PubMed  PubMed Central  Google Scholar 

  95. Mills, P. J. et al. The self-directed biological transformation initiative and well-being. J. Altern. Complement. Med. 22, 627–634 (2016).

    PubMed  Google Scholar 

  96. Oken, B. S. et al. Randomized controlled trial of yoga and exercise in multiple sclerosis. Neurology 62, 2058–2064 (2004).

    CAS  PubMed  Google Scholar 

  97. Velikonja, O., Čurić, K., Ožura, A. & Jazbec, S. Š. Influence of sports climbing and yoga on spasticity, cognitive function, mood and fatigue in patients with multiple sclerosis. Clin. Neurol. Neurosurg. 112, 597–601 (2010).

    PubMed  Google Scholar 

  98. Razazian, N. et al. Exercising impacts on fatigue, depression, and paresthesia in female patients with multiple sclerosis. Med. Sci. Sports Exerc. 48, 796–803 (2016).

    CAS  PubMed  Google Scholar 

  99. Andreasen, A. K., Stenager, E. & Dalgas, U. The effect of exercise therapy on fatigue in multiple sclerosis. Mult. Scler. 17, 1041–1054 (2011).

    CAS  PubMed  Google Scholar 

  100. Mostert, S. & Kesselring, J. Effects of a short-term exercise training program on aerobic fitness, fatigue, health perception and activity level of subjects with multiple sclerosis. Mult. Scler. 8, 161–168 (2002).

    CAS  PubMed  Google Scholar 

  101. Plow, M. A., Mathiowetz, V. & Lowe, D. A. Comparing individualized rehabilitation to a group wellness intervention for persons with multiple sclerosis. Am. J. Health Promot. 24, 23–26 (2009).

    PubMed  Google Scholar 

  102. McCullagh, R., Fitzgerald, A. P., Murphy, R. P. & Cooke, G. Long-term benefits of exercising on quality of life and fatigue in multiple sclerosis patients with mild disability: a pilot study. Clin. Rehabil. 22, 206–214 (2008).

    PubMed  Google Scholar 

  103. Dalgas, U. et al. Fatigue, mood and quality of life improve in MS patients after progressive resistance training. Mult. Scler. 16, 480–490 (2010).

    CAS  PubMed  Google Scholar 

  104. Kargarfard, M., Etemadifar, M., Baker, P., Mehrabi, M. & Hayatbakhsh, R. Effect of aquatic exercise training on fatigue and health-related quality of life in patients with multiple sclerosis. Arch. Phys. Med. Rehabil. 93, 1701–1708 (2012).

    PubMed  Google Scholar 

  105. Bansi, J., Bloch, W., Gamper, U. & Kesselring, J. Training in MS: influence of two different endurance training protocols (aquatic versus overland) on cytokine and neurotrophin concentrations during three week randomized controlled trial. Mult. Scler. 19, 613–621 (2012).

    PubMed  Google Scholar 

  106. Heine, M., van de Port, I., Rietberg, M. B., van Wegen, E. E. & Kwakkel, G. Exercise therapy for fatigue in multiple sclerosis. Cochrane Database Syst Rev. 9, CD009956 (2015).

    Google Scholar 

  107. van Kessel, K. et al. A randomized controlled trial of cognitive behavior therapy for multiple sclerosis fatigue. Psychosom. Med. 70, 205–213 (2008).

    PubMed  Google Scholar 

  108. Poettgen, J. et al. Online fatigue management program for patients with multiple sclerosis — a randomized controlled trial. Mult. Scler. 21, 41–42 (2015).

    Google Scholar 

  109. Catalan, M. et al. Treatment of fatigue in multiple sclerosis patients: a neurocognitive approach. Rehabil. Res. Pract. 2011, 670537 (2011).

    PubMed  PubMed Central  Google Scholar 

  110. Grossman, P. et al. MS quality of life, depression, and fatigue improve after mindfulness training: a randomized trial. Neurology 75, 1141–1149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Rosti-Otajärvi, E. M. & Hämäläinen, P. I. Neuropsychological rehabilitation for multiple sclerosis. Cochrane Database Syst Rev. 2, CD009131 (2014).

    Google Scholar 

  112. Vogt, A. et al. Working memory training in patients with multiple sclerosis — comparison of two different training schedules. Restor. Neurol. Neurosci. 27, 225–235 (2009).

    PubMed  Google Scholar 

  113. Becker, K. J. Inflammation and the silent sequelae of stroke. Neurotherapeutics 13, 801–810 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Hackett, M. L., Köhler, S., O'Brien, J. T. & Mead, G. E. Neuropsychiatric outcomes of stroke. Lancet Neurol. 13, 525–534 (2014).

    PubMed  Google Scholar 

  115. van der Werf, S. P., van den Broek, H. L., Anten, H. W. & Bleijenberg, G. Experience of severe fatigue long after stroke and its relation to depressive symptoms and disease characteristics. Eur. Neurol. 45, 28–33 (2001).

    CAS  PubMed  Google Scholar 

  116. Choi-Kwon, S., Choi, J., Kwon, S. U., Kang, D.-W. & Kim, J. S. Fluoxetine is not effective in the treatment of post-stroke fatigue: a double-blind, placebo-controlled study. Cerebrovasc. Dis. 23, 103–108 (2007).

    PubMed  Google Scholar 

  117. Lynch, J. et al. Fatigue after stroke: the development and evaluation of a case definition. J. Psychosom. Res. 63, 539–544 (2007).

    PubMed  Google Scholar 

  118. Duncan, F., Wu, S. & Mead, G. E. Frequency and natural history of fatigue after stroke: a systematic review of longitudinal studies. J. Psychosom. Res. 73, 18–27 (2012).

    PubMed  Google Scholar 

  119. Andersen, G., Christensen, D., Kirkevold, M. & Johnsen, S. P. Post-stroke fatigue and return to work: a 2-year follow-up. Acta Neurol. Scand. 125, 248–253 (2012).

    CAS  PubMed  Google Scholar 

  120. Tang, W. K. et al. Acute basal ganglia infarcts in poststroke fatigue: an MRI study. J. Neurol. 257, 178–182 (2010).

    PubMed  Google Scholar 

  121. Tang, W. K. et al. Poststroke fatigue is associated with caudate infarcts. J. Neurol. Sci. 324, 131–135 (2013).

    CAS  PubMed  Google Scholar 

  122. Choi-Kwon, S., Han, S. W., Kwon, S. U. & Kim, J. S. Poststroke fatigue: characteristics and related factors. Cerebrovasc. Dis. 19, 84–90 (2005).

    PubMed  Google Scholar 

  123. Christensen, D. et al. Dimensions of post-stroke fatigue: a two-year follow-up study. Cerebrovasc. Dis. 26, 134–141 (2008).

    PubMed  Google Scholar 

  124. Elf, M., Eriksson, G., Johansson, S., von Koch, L. & Ytterberg, C. Self-reported fatigue and associated factors six years after stroke. PLoS ONE 11, e0161942 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. Brioschi, A. et al. Effect of modafinil on subjective fatigue in multiple sclerosis and stroke patients. Eur. Neurol. 62, 243–249 (2009).

    CAS  PubMed  Google Scholar 

  126. Poulsen, M. B., Damgaard, B., Zerahn, B., Overgaard, K. & Rasmussen, R. S. Modafinil may alleviate poststroke fatigue: a randomized, placebo-controlled, double-blinded trial. Stroke 46, 3470–3477 (2015).

    CAS  PubMed  Google Scholar 

  127. Lillicrap, T. et al. Modafinil In Debilitating fatigue After Stroke (MIDAS): study protocol for a randomised, double-blinded, placebo-controlled, crossover trial. Trials 17, 410 (2016).

    PubMed  PubMed Central  Google Scholar 

  128. Bivard, A. et al. MIDAS (Modafinil in Debilitating Fatigue After Stroke): a randomized, double-blind, placebo-controlled, cross-over trial. Stroke 48, 1293–1298 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. Karaiskos, D., Tzavellas, E., Spengos, K., Vassilopoulou, S. & Paparrigopoulos, T. Duloxetine versus citalopram and sertraline in the treatment of poststroke depression, anxiety, and fatigue. J. Neuropsychiatry Clin. Neurosci. 24, 349–353 (2012).

    CAS  PubMed  Google Scholar 

  130. Kim, J. S. Post-stroke mood and emotional disturbances: pharmacological therapy based on mechanisms. J. Stroke 18, 244–255 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. Clarke, A., Barker-Collo, S. L. & Feigin, V. L. Poststroke fatigue: does group education make a difference? A randomized pilot trial. Top. Stroke Rehabil. 19, 32–39 (2012).

    PubMed  Google Scholar 

  132. Zedlitz, A. M., Rietveld, T. C., Geurts, A. C. & Fasotti, L. Cognitive and graded activity training can alleviate persistent fatigue after stroke: a randomized, controlled trial. Stroke J. 43, 1046–1051 (2012).

    Google Scholar 

  133. Johansson, B., Bjuhr, H. & Rönnbäck, L. Mindfulness-based stress reduction (MBSR) improves long-term mental fatigue after stroke or traumatic brain injury. Brain Inj. 26, 1621–1628 (2012).

    CAS  PubMed  Google Scholar 

  134. Alves, G., Wentzel-Larsen, T. & Larsen, J. P. Is fatigue an independent and persistent symptom in patients with Parkinson disease? Neurology 63, 1908–1911 (2004).

    CAS  PubMed  Google Scholar 

  135. Herlofson, K. & Larsen, J. P. Measuring fatigue in patients with Parkinson's disease — the fatigue severity scale. Eur. J. Neurol. 9, 595–600 (2002).

    CAS  PubMed  Google Scholar 

  136. Havlikova, E. et al. Impact of fatigue on quality of life in patients with Parkinson's disease. Eur. J. Neurol. 15, 475–480 (2008).

    CAS  PubMed  Google Scholar 

  137. Friedman, J. H. et al. Fatigue rating scales critique and recommendations by the Movement Disorders Society task force on rating scales for Parkinson's disease. Mov. Disord. 25, 805–822 (2010).

    PubMed  Google Scholar 

  138. Elbers, R. G., Verhoef, J., van Wegen, E. E., Berendse, H. W. & Kwakkel, G. Interventions for fatigue in Parkinson's disease. Cochrane Database Syst Rev. 10, CD010925 (2015).

    Google Scholar 

  139. Elbers, R. G., Berendse, H. W. & Kwakkel, G. Treatment of fatigue in Parkinson disease. JAMA 315, 2340–2341 (2016).

    CAS  PubMed  Google Scholar 

  140. Cantor, F. Central and peripheral fatigue: exemplified by multiple sclerosis and myasthenia gravis. PM R. 2, 399–405 (2010).

    PubMed  Google Scholar 

  141. Vinge, L. & Andersen, H. Muscle strength and fatigue in newly diagnosed patients with myasthenia gravis. Muscle Nerve 54, 709–714 (2016).

    CAS  PubMed  Google Scholar 

  142. Hoffmann, S. et al. Quantitative motor assessment of muscular weakness in myasthenia gravis: a pilot study. BMC Neurol. 15, 265 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. Sanders, D. B. et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology 87, 419–425 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Paul, R. H., Cohen, R. A., Goldstein, J. M. & Gilchrist, J. M. Fatigue and its impact on patients with myasthenia gravis. Muscle Nerve 23, 1402–1406 (2000).

    CAS  PubMed  Google Scholar 

  145. Symonette, C. J., Watson, B. V., Koopman, W. J., Nicolle, M. W. & Doherty, T. J. Muscle strength and fatigue in patients with generalized myasthenia gravis. Muscle Nerve 41, 362–369 (2010).

    PubMed  Google Scholar 

  146. Elsais, A., Wyller, V. B., Loge, J. H. & Kerty, E. Fatigue in myasthenia gravis: is it more than muscular weakness? BMC Neurol. 13, 132 (2013).

    PubMed  PubMed Central  Google Scholar 

  147. Suarez, G. A. et al. The autonomic symptom profile: a new instrument to assess autonomic symptoms. Neurology 52, 523–528 (1999).

    CAS  PubMed  Google Scholar 

  148. Askmark, H., Haggård, L., Nygren, I. & Punga, A. R. Vitamin D deficiency in patients with myasthenia gravis and improvement of fatigue after supplementation of vitamin D3: a pilot study. Eur. J. Neurol. 19, 1554–1560 (2012).

    CAS  PubMed  Google Scholar 

  149. Abraham, A. & Drory, V. E. Fatigue in motor neuron diseases. Neuromuscul. Disord. 22 (Suppl. 3), S198–S202 (2012).

    PubMed  Google Scholar 

  150. Ramirez, C., Piemonte, M. E., Callegaro, D. & Da Silva, H. C. Fatigue in amyotrophic lateral sclerosis: frequency and associated factors. Amyotroph. Lateral Scler. 9, 75–80 (2008).

    PubMed  Google Scholar 

  151. Lou, J.-S., Reeves, A., Benice, T. & Sexton, G. Fatigue and depression are associated with poor quality of life in ALS. Neurology 60, 122–123 (2003).

    PubMed  Google Scholar 

  152. McElhiney, M. C., Rabkin, J. G., Gordon, P. H., Goetz, R. & Mitsumoto, H. Prevalence of fatigue and depression in ALS patients and change over time. J. Neurol. Neurosurg. Psychiatry 80, 1146–1149 (2009).

    CAS  PubMed  Google Scholar 

  153. Jenkins, T. M., Hollinger, H. & McDermott, C. J. The evidence for symptomatic treatments in amyotrophic lateral sclerosis. Curr. Opin. Neurol. 27, 524–531 (2014).

    CAS  PubMed  Google Scholar 

  154. Carter, G. T. et al. Modafinil to treat fatigue in amyotrophic lateral sclerosis: an open label pilot study. Am. J. Hosp. Palliat. Care 22, 55–59 (2005).

    PubMed  Google Scholar 

  155. Rabkin, J. G. et al. Modafinil treatment of fatigue in patients with ALS: a placebo-controlled study. Muscle Nerve 39, 297–303 (2009).

    CAS  PubMed  Google Scholar 

  156. Payne, C., Wiffen, P. J. & Martin, S. Interventions for fatigue and weight loss in adults with advanced progressive illness. Cochrane Database Syst. Rev. 1, CD008427 (2012).

    PubMed  Google Scholar 

  157. Jarius, S., Wildemann, B. & Paul, F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin. Exp. Immunol. 176, 149–164 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Metz, I. et al. Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 3, e204 (2016).

    PubMed  PubMed Central  Google Scholar 

  159. Zekeridou, A. & Lennon, V. A. Aquaporin-4 autoimmunity. Neurol. Neuroimmunol. Neuroinflamm. 2, e110 (2015).

    PubMed  PubMed Central  Google Scholar 

  160. Trebst, C. et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J. Neurol. 261, 1–16 (2014).

    CAS  PubMed  Google Scholar 

  161. Chanson, J.-B. et al. Evaluation of health-related quality of life, fatigue and depression in neuromyelitis optica. Eur. J. Neurol. 18, 836–841 (2011).

    PubMed  Google Scholar 

  162. Muto, M. et al. Current symptomatology in multiple sclerosis and neuromyelitis optica. Eur. J. Neurol. 22, 299–304 (2015).

    CAS  PubMed  Google Scholar 

  163. Chavarro, V. S. et al. Insufficient treatment of severe depression in neuromyelitis optica spectrum disorder. Neurol. Neuroimmunol. Neuroinflamm. 3, e286 (2016).

    PubMed  PubMed Central  Google Scholar 

  164. Shi, Z. et al. Factors that impact health-related quality of life in neuromyelitis optica spectrum disorder: anxiety, disability, fatigue and depression. J. Neuroimmunol. 293, 54–58 (2016).

    CAS  PubMed  Google Scholar 

  165. Akaishi, T., Nakashima, I., Misu, T., Fujihara, K. & Aoki, M. Depressive state and chronic fatigue in multiple sclerosis and neuromyelitis optica. J. Neuroimmunol. 283, 70–73 (2015).

    CAS  PubMed  Google Scholar 

  166. Song, Y. et al. Sleep abnormality in neuromyelitis optica spectrum disorder. Neurol. Neuroimmunol. Neuroinflamm. 2, e94 (2015).

    PubMed  PubMed Central  Google Scholar 

  167. Rammohan, K. W. et al. Efficacy and safety of modafinil (Provigil) for the treatment of fatigue in multiple sclerosis: a two centre phase 2 study. J. Neurol. Neurosurg. Psychiatry 72, 179–183 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Stankoff, B. et al. Modafinil for fatigue in MS: a randomized placebo-controlled double-blind study. Neurology 64, 1139–1143 (2005).

    CAS  PubMed  Google Scholar 

  169. Möller, F. et al. HAGIL (Hamburg Vigil Study): a randomized placebo-controlled double-blind study with modafinil for treatment of fatigue in patients with multiple sclerosis. Mult. Scler. 17, 1002–1009 (2011).

    PubMed  Google Scholar 

  170. Lange, R., Volkmer, M., Heesen, C. & Liepert, J. Modafinil effects in multiple sclerosis patients with fatigue. J. Neurol. 256, 645–650 (2009).

    CAS  PubMed  Google Scholar 

  171. Zifko, U. A., Rupp, M., Schwarz, S., Zipko, H. T. & Maida, E. M. Modafinil in treatment of fatigue in multiple sclerosis. J. Neurol. 249, 983–987 (2002).

    CAS  PubMed  Google Scholar 

  172. Nagels, G. et al. P300 and treatment effect of modafinil on fatigue in multiple sclerosis. J. Clin. Neurosci. 14, 33–40 (2007).

    CAS  PubMed  Google Scholar 

  173. Ford-Johnson, L. et al. Cognitive effects of modafinil in patients with multiple sclerosis: a clinical trial. Rehabil. Psychol. 61, 82–91 (2016).

    CAS  PubMed  Google Scholar 

  174. Tomassini, V. et al. Comparison of the effects of acetyl l-carnitine and amantadine for the treatment of fatigue in multiple sclerosis: results of a pilot, randomised, double-blind, crossover trial. J. Neurol. Sci. 218, 103–108 (2004).

    CAS  PubMed  Google Scholar 

  175. Wingerchuk, D. M. et al. A randomized controlled crossover trial of aspirin for fatigue in multiple sclerosis. Neurology 64, 1267–1269 (2005).

    CAS  PubMed  Google Scholar 

  176. Pavsic, K., Pelicon, K., Ledinek, A. H. & Sega, S. Short-term impact of fampridine on motor and cognitive functions, mood and quality of life among multiple sclerosis patients. Clin. Neurol.Neurosurg. 139, 35–40 (2015).

    PubMed  Google Scholar 

  177. Allart, E. et al. Sustained-released fampridine in multiple sclerosis: effects on gait parameters, arm function, fatigue, and quality of life. J. Neurol. 262, 1936–1945 (2015).

    CAS  PubMed  Google Scholar 

  178. Lou, J.-S. et al. Using modafinil to treat fatigue in Parkinson disease: a double-blind, placebo-controlled pilot study. Clin. Neuropharmacol. 32, 305–310 (2009).

    CAS  PubMed  Google Scholar 

  179. Tyne, H. L., Taylor, J., Baker, G. A. & Steiger, M. J. Modafinil for Parkinson's disease fatigue. J. Neurol. 257, 452–456 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by Deutsche Forschungs-gemeinschaft (grant DFG Exc 257 to F.P.) The authors thank Hanna Zimmermann for her valuable editorial support in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

I.-K.P. and F.P. researched data for the article; contributed substantially to discussions of its content, wrote the manuscript, and undertook review or editing of the manuscript before submission.

Corresponding author

Correspondence to Iris-Katharina Penner.

Ethics declarations

Competing interests

The authors declare that I.-K.P. has received honoraria for speaking at scientific meetings, serving on scientific advisory boards and consulting activities from Adamas Pharma, Bayer Pharma, Biogen, Genzyme, Merck Serono, Novartis, Roche, Teva Pharmaceuticals; and that she has received research support from Novartis, the German Multiple Sclerosis Society, and Teva Pharmaceuticals. F.P. declares that he has served on scientific advisory boards for MedImmune and Novartis; received speaker honoraria and travel funding from Alexion, Bayer, Biogen Idec, Chugai, MedImmune, Merck Serono, Novartis, Sanofi-Aventis/Genzyme, Teva Pharmaceuticals, and Shire; is an academic editor of PLoS ONE and an associate editor of Neurology Neuroimmunology & Neuroinflammation; has consulted for Alexion, Biogen Idec, MedImmune, Sanofi-Aventis/Genzyme and Shire; and received research support from Alexion, Arthur Arnstein Stiftung Berlin, Bayer, Biogen Idec, EU FP7 Framework Program, German Ministry of Education and Research, German Research Council, Guthy-Jackson Charitable Foundation, Merck Serono, National Multiple Sclerosis Society of the USA, Novartis, Sanofi-Aventis/Genzyme, Teva Pharmaceuticals, and Werth Stiftung of the City of Cologne.

Related links

DATABASES

Patients Like Me

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penner, IK., Paul, F. Fatigue as a symptom or comorbidity of neurological diseases. Nat Rev Neurol 13, 662–675 (2017). https://doi.org/10.1038/nrneurol.2017.117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing