Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kidney transplantation and the ageing immune system

Abstract

The world population is rapidly growing and ageing at a pace that is projected to continue for at least three decades. This shift towards an older populace has invariably increased the number of individuals with diseases related to ageing, such as chronic kidney disease. The increase in chronic kidney disease is associated with a growing number of elderly patients receiving kidney transplants. Understanding how the immune system changes with increasing age will help to define the risks of rejection and infection in the elderly population and will focus attention on the need for individualized immunosuppression for patients in this age group. This Review addresses what is currently known about ageing and the immune system, highlighting age-related changes that affect the outcome of transplantation in elderly individuals. The need for new strategies to improve outcomes in this growing population of elderly renal transplant recipients is also emphasized.

Key Points

  • In the USA, the incident rate of end-stage renal disease is highest in patients aged >65 years and the ageing population is likely to result in more elderly renal transplant recipients

  • Although elderly renal transplant recipients are at increased risk of late mortality owing to comorbidities associated with ageing, early patient and graft survival are comparable to those of younger patients

  • Understanding how the immune system changes with increasing age might help clinicians to consider a more individualized immunosuppressive approach to the elderly transplant recipient to avoid inappropriate immunosuppression

  • Ageing causes thymic involution, narrowing of the T-cell repertoire, cellular senescence and reduced costimulatory signals, resulting in defects in T-cell-mediated immunity, which has an important role in allograft rejection

  • Advanced age is associated with alterations in the differentiation and function of haematopoietic stem cells, which has implications for the upper age limit of bone marrow transplant donors

  • Prospective studies of immunological function in elderly transplant recipients are needed before we can advise with certainty on the best therapeutic approach to immunosuppression in these patients

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An increasing number of patients aged ≥65 years were listed for deceased donor kidney transplantation in the USA between 1992 and 2011.
Figure 2: Ageing has negative effects on the development and maintenance of the adaptive immune system.
Figure 3: Innate immunity is altered with ageing.

Similar content being viewed by others

References

  1. United States Census Bureau. World Population Ageing: 1950–2050. http://www.un.org/esa/population/publications/worldageing19502050/ (2002).

  2. Coresh, J., Astor, B. C., Greene, T., Eknoyan, G. & Levey, A. S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 41, 1–12 (2003).

    PubMed  Google Scholar 

  3. US Department of Health and Human Services. OPTN Organ Transplant and Procurement Network [online], (2012).

  4. Danovitch, G. M. et al. Current status of kidney and pancreas transplantation in the United States, 1994–2003. Am. J. Transplant. 5, 904–915 (2005).

    Article  PubMed  Google Scholar 

  5. Wolfe, R. A. et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 341, 1725–1730 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, D. W. et al. A comparison of the effects of dialysis and renal transplantation on the survival of older uremic patients. Transplantation 69, 794–799 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Oniscu, G. C., Brown, H. & Forsythe, J. L. How great is the survival advantage of transplantation over dialysis in elderly patients? Nephrol. Dial. Transplant. 19, 945–951 (2004).

    Article  PubMed  Google Scholar 

  8. Giessing, M. et al. “Old-for-old” cadaveric renal transplantation: surgical findings, perioperative complications and outcome. Eur. Urol. 44, 701–708 (2003).

    Article  PubMed  Google Scholar 

  9. Rao, P. S. et al. Renal transplantation in elderly patients older than 70 years of age: results from the Scientific Registry of Transplant Recipients. Transplantation 83, 1069–1074 (2007).

    Article  PubMed  Google Scholar 

  10. Eufrásio, P. et al. Renal transplantation in recipients over 65 years old. Transplant. Proc. 43, 117–119 (2011).

    Article  PubMed  Google Scholar 

  11. Jacobsen, P. A. et al. Lower calcineurin inhibitor doses in older compared to younger kidney transplant recipients yield similar troughs. Am. J. Transplant. http://dx.doi.org/10.1111/j.1600-61432012.04232.x.

  12. Tullius, S. G. & Milford, E. Kidney allocation and the aging immune response. N. Engl. J. Med. 364, 1369–1370 (2011).

    Article  PubMed  Google Scholar 

  13. Tullius, S. G. et al. The combination of donor and recipient age is critical in determining host immunoresponsiveness and renal transplant outcome. Ann. Surg. 252, 662–674 (2010).

    PubMed  Google Scholar 

  14. Cecka, J. M. The OPTN/UNOS renal transplant registry. Clin. Transpl. 2004, 1–16 (2004).

    Google Scholar 

  15. Frei, U. et al. Prospective age-matching in elderly kidney transplant recipients—a 5-year analysis of the Eurotransplant Senior Program. Am. J. Transplant. 8, 50–57 (2008).

    CAS  PubMed  Google Scholar 

  16. Pratschke, J. et al. Potent early immune response after kidney transplantation in patients of the European senior transplant program. Transplantation 87, 992–1000 (2009).

    Article  PubMed  Google Scholar 

  17. Lim, W. H. et al. Lack of impact of donor age on patient survival for renal transplant recipients ≥60years. Transpl. Int. 25, 401–408 (2012).

    Article  PubMed  Google Scholar 

  18. Palomar, R. et al. Should aging recipients of kidney grafts receive less immunosuppression? Transplant. Proc. 31, 2277–2278 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Afaneh, C. et al. Pancreas transplantation: does age increase morbidity? J. Transplant. 2011, 596801 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Daneshvar, D. et al. Heart transplantation in patients aged 70 years and older: a two-decade experience. Transplant. Proc. 43, 3851–3856 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Peraira, J. R. et al. Differential characteristics of heart transplantation in patients older than 60 years. Transplant. Proc. 35, 1959–1961 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Tjang, Y. S., van der Heijden, G. J., Tenderich, G., Körfer, R. & Grobbee, D. E. Impact of recipient's age on heart transplantation outcome. Ann. Thorac. Surg. 85, 2051–2055 (2008).

    Article  PubMed  Google Scholar 

  23. Dorshkind, K. & Swain, S. Age-associated declines in immune system development and function: causes, consequences, and reversal. Curr. Opin. Immunol. 21, 404–407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Linton, P. J. & Dorshkind, K. Age-related changes in lymphocyte development and function. Nat. Immunol. 5, 133–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Yung, R. L. Changes in immune function with age. Rheum. Dis. Clin. North Am. 26, 455–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Koch, S. et al. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun. Ageing 5, 6 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yager, E. J. et al. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J. Exp. Med. 205, 711–723 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller, R. A., Garcia, G., Kirk, C. J. & Witkowski, J. M. Early activation defects in T lymphocytes from aged mice. Immunol. Rev. 160, 79–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Frasca, D. & Blomberg, B. B. Effects of aging on B cell function. Curr. Opin. Immunol. 21, 425–430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Larbi, A. et al. Impact of age on T cell signaling: a general defect or specific alterations? Ageing Res. Rev. 10, 370–378 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Bachireddy, P., Rakhra, K. & Felsher, D. W. Immunology in the clinic review series; focus on cancer: multiple roles for the immune system in oncogene addiction. Clin. Exp. Immunol. 167, 188–194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lynch, H. E. et al. Thymic involution and immune reconstitution. Trends Immunol. 30, 366–373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, G. et al. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat. Med. 18, 1518–1524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Almanzar, G. et al. Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J. Virol. 79, 3675–3683 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ouyang, Q. et al. Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp. Gerontol. 38, 911–920 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Ouyang, Q. et al. Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J. Clin. Immunol. 23, 247–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Czesnikiewicz-Guzik, M. et al. T cell subset-specific susceptibility to aging. Clin. Immunol. 127, 107–118 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clambey, E. T., Kappler, J. W. & Marrack, P. CD8 T cell clonal expansions & aging: a heterogeneous phenomenon with a common outcome. Exp. Gerontol. 42, 407–411 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clambey, E. T., White, J., Kappler, J. W. & Marrack, P. Identification of two major types of age-associated CD8 clonal expansions with highly divergent properties. Proc. Natl Acad. Sci. USA 105, 12997–13002 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Effros, R. B. Telomerase induction in T cells: a cure for aging and disease? Exp. Gerontol. 42, 416–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Macaulay, R., Akbar, A. N. & Henson, S. M. The role of the T cell in age-related inflammation. Age (Dordr.) http://dx.doi.org/10.1007/s11357-012-9381-2.

  43. Gorgas, G., Butch, E. R., Guan, K. L. & Miller, R. A. Diminished activation of the MAP kinase pathway in CD3-stimulated T lymphocytes from old mice. Mech. Ageing Dev. 94, 71–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Du, W., Shen, H., Galan, A. & Goldstein, D. R. An age-specific CD8+ T cell pathway that impairs the effectiveness of strategies to prolong allograft survival. J. Immunol. 187, 3631–3640 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Haynes, L., Linton, P. J., Eaton, S. M., Tonkonogy, S. L. & Swain, S. L. Interleukin 2, but not other common γ chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice. J. Exp. Med. 190, 1013–1024 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cancro, M. P. et al. B cells and aging: molecules and mechanisms. Trends Immunol. 30, 313–318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frasca, D., Diaz, A., Romero, M., Landin, A. M. & Blomberg, B. B. Age effects on B cells and humoral immunity in humans. Ageing Res. Rev. 10, 330–335 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Kolibab, K., Smithson, S. L., Rabquer, B., Khuder, S. & Westerink, M. A. Immune response to pneumococcal polysaccharides 4 and 14 in elderly and young adults: analysis of the variable heavy chain repertoire. Infect. Immun. 73, 7465–7476 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chong, Y. et al. Age-related accumulation of Ig VH gene somatic mutations in peripheral B cells from aged humans. Clin. Exp. Immunol. 133, 59–66 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kolar, G. R., Mehta, D., Wilson, P. C. & Capra, J. D. Diversity of the Ig repertoire is maintained with age in spite of reduced germinal centre cells in human tonsil lymphoid tissue. Scand. J. Immunol. 64, 314–324 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, X. & Stollar, B. D. Immunoglobulin VH gene expression in human aging. Clin. Immunol. 93, 132–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao, L. et al. Changes of CD4+CD25+Foxp3+ regulatory T cells in aged Balb/c mice. J. Leukoc. Biol. 81, 1386–1394 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Denecke, C. et al. Prolonged graft survival in older recipient mice is determined by impaired effector T-cell but intact regulatory T-cell responses. PLoS ONE 5, e9232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Di Ianni, M. et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117, 3921–3928 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Rahimpour, A. et al. γδ T cells augment rejection of skin grafts by enhancing cross-priming of CD8 T cells to skin-derived antigen. J. Invest. Dermatol. 132, 1656–1664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheung, K. P., Taylor, K. R. & Jameson, J. M. Immunomodulation at epithelial sites by obesity and metabolic disease. Immunol. Res. 52, 182–199 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Giachino, C. et al. Clonal expansions of Vδ1+ and Vδ2+ cells increase with age and limit the repertoire of human γδ T cells. Eur. J. Immunol. 24, 1914–1918 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Argentati, K. et al. Numerical and functional alterations of circulating γδ T lymphocytes in aged people and centenarians. J. Leukoc. Biol. 72, 65–71 (2002).

    CAS  PubMed  Google Scholar 

  60. Re, F. et al. Skewed representation of functionally distinct populations of Vγ9Vδ2 T lymphocytes in aging. Exp. Gerontol. 40, 59–66 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Della Bella, S. et al. Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin. Immunol. 122, 220–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Agrawal, A., Tay, J., Ton, S., Agrawal, S. & Gupta, S. Increased reactivity of dendritic cells from aged subjects to self-antigen, the human DNA. J. Immunol. 182, 1138–1145 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Shodell, M. & Siegal, F. P. Circulating, interferon-producing plasmacytoid dendritic cells decline during human ageing. Scand. J. Immunol. 56, 518–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Agrawal, A. et al. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J. Immunol. 178, 6912–6922 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Mahbub, S., Brubaker, A. L. & Kovacs, E. J. Aging of the innate immune system: an update. Curr. Immunol. Rev. 7, 104–115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gomez, C. R., Boehmer, E. D. & Kovacs, E. J. The aging innate immune system. Curr. Opin. Immunol. 17, 457–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Nomellini, V., Gomez, C. R. & Kovacs, E. J. Aging and impairment of innate immunity. Contrib. Microbiol. 15, 188–205 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. El Mezayen, R., El Gazzar, M., Myer, R. & High, K. P. Aging-dependent upregulation of IL-23p19 gene expression in dendritic cells is associated with differential transcription factor binding and histone modifications. Aging Cell 8, 553–565 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Stout-Delgado, H. W., Yang, X., Walker, W. E., Tesar, B. M. & Goldstein, D. R. Aging impairs IFN regulatory factor 7 up-regulation in plasmacytoid dendritic cells during TLR9 activation. J. Immunol. 181, 6747–6756 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Takahashi, I. et al. Monocyte chemiluminescence and macrophage precursors in the aged. Acta Med. Okayama 39, 447–451 (1985).

    CAS  PubMed  Google Scholar 

  71. Ogawa, T., Kitagawa, M. & Hirokawa, K. Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech. Ageing Dev. 117, 57–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Herrero, C., Marqués, L., Lloberas, J. & Celada, A. IFN-γ-dependent transcription of MHC class II IA is impaired in macrophages from aged mice. J. Clin. Invest. 107, 485–493 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chaves, M. M. et al. Role of inositol 1,4,5-triphosphate and p38 mitogen-activated protein kinase in reactive oxygen species generation by granulocytes in a cyclic AMP-dependent manner: an age-related phenomenon. Gerontology 53, 228–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Chelvarajan, R. L., Collins, S. M., Van Willigen, J. M. & Bondada, S. The unresponsiveness of aged mice to polysaccharide antigens is a result of a defect in macrophage function. J. Leukoc. Biol. 77, 503–512 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Clark, J. A. & Peterson, T. C. Cytokine production and aging: overproduction of IL-8 in elderly males in response to lipopolysaccharide. Mech. Ageing Dev. 77, 127–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Delpedro, A. D., Barjavel, M. J., Mamdouh, Z., Faure, S. & Bakouche, O. Signal transduction in LPS-activated aged and young monocytes. J. Interferon Cytokine Res. 18, 429–437 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Mariani, E. et al. RANTES and MIP-1α production by T lymphocytes, monocytes and NK cells from nonagenarian subjects. Exp. Gerontol. 37, 219–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Gon, Y. et al. Lower serum concentrations of cytokines in elderly patients with pneumonia and the impaired production of cytokines by peripheral blood monocytes in the elderly. Clin. Exp. Immunol. 106, 120–126 (1996).

    CAS  PubMed  Google Scholar 

  79. Ligthart, G. J. et al. Admission criteria for immunogerontological studies in man: the SENIEUR protocol. Mech. Ageing Dev. 28, 47–55 (1984).

    Article  CAS  PubMed  Google Scholar 

  80. van Duin, D. et al. Age-associated defect in human TLR-1/2 function. J. Immunol. 178, 970–975 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Kong, K. F. et al. Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly. J. Virol. 82, 7613–7623 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fortin, C. F., McDonald, P. P., Lesur, O. & Fülöp, T. Jr. Aging and neutrophils: there is still much to do. Rejuvenation Res. 11, 873–882 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Lord, J. M., Butcher, S., Killampali, V., Lascelles, D. & Salmon, M. Neutrophil ageing and immunesenescence. Mech. Ageing Dev. 122, 1521–1535 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Fulop, T. et al. Signal transduction and functional changes in neutrophils with aging. Aging Cell 3, 217–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Fortin, C. F., Lesur, O. & Fulop, T. Jr. Effects of TREM-1 activation in human neutrophils: activation of signaling pathways, recruitment into lipid rafts and association with TLR4. Int. Immunol. 19, 41–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Gomez, C. R. et al. Advanced age exacerbates the pulmonary inflammatory response after lipopolysaccharide exposure. Crit. Care Med. 35, 246–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Mocchegiani, E. & Malavolta, M. NK and NKT cell functions in immunosenescence. Aging Cell 3, 177–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Borrego, F. et al. NK phenotypic markers and IL2 response in NK cells from elderly people. Exp. Gerontol. 34, 253–265 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Krishnaraj, R. Senescence and cytokines modulate the NK cell expression. Mech. Ageing Dev. 96, 89–101 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Krishnaraj, R. Immunosenescence of human NK cells: effects on tumor target recognition, lethal hit and interferon sensitivity. Immunol. Lett. 34, 79–84 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Kutza, J. & Murasko, D. M. Effects of aging on natural killer cell activity and activation by interleukin-2 and IFN-α. Cell. Immunol. 155, 195–204 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Kutza, J. & Murasko, D. M. Age-associated decline in IL-2 and IL-12 induction of LAK cell activity of human PBMC samples. Mech. Ageing Dev. 90, 209–222 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Mariani, E. et al. Age-associated changes in CD8+ and CD16+ cell reactivity: clonal analysis. Clin. Exp. Immunol. 81, 479–484 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Solana, R. & Mariani, E. NK and NK/T cells in human senescence. Vaccine 18, 1613–1620 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Peralbo, E., Alonso, C. & Solana, R. Invariant NKT and NKT-like lymphocytes: two different T cell subsets that are differentially affected by ageing. Exp. Gerontol. 42, 703–708 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. DelaRosa, O. et al. Vα24+ NKT cells are decreased in elderly humans. Exp. Gerontol. 37, 213–217 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Peralbo, E. et al. Decreased frequency and proliferative response of invariant Vα24Vβ11 natural killer T (iNKT) cells in healthy elderly. Biogerontology 7, 483–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Faunce, D. E., Palmer, J. L., Paskowicz, K. K., Witte, P. L. & Kovacs, E. J. CD1d-restricted NKT cells contribute to the age-associated decline of T cell immunity. J. Immunol. 175, 3102–3109 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Chen, J., Astle, C. M. & Harrison, D. E. Genetic regulation of primitive hematopoietic stem cell senescence. Exp. Hematol. 28, 442–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Geiger, H., True, J. M., de Haan, G. & Van Zant, G. Age- and stage-specific regulation patterns in the hematopoietic stem cell hierarchy. Blood 98, 2966–2972 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Brusnahan, S. K. et al. Human blood and marrow side population stem cell and Stro-1 positive bone marrow stromal cell numbers decline with age, with an increase in quality of surviving stem cells: correlation with cytokines. Mech. Ageing Dev. 131, 718–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. de Haan, G. & Van Zant, G. Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 93, 3294–3301 (1999).

    CAS  PubMed  Google Scholar 

  103. Cho, R. H., Sieburg, H. B. & Muller-Sieburg, C. E. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111, 5553–5561 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Muller-Sieburg, C. & Sieburg, H. B. Stem cell aging: survival of the laziest? Cell Cycle 7, 3798–3804 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Roeder, I. et al. Characterization and quantification of clonal heterogeneity among hematopoietic stem cells: a model-based approach. Blood 112, 4874–4883 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chambers, S. M. et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 5, e201 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liang, Y., Van Zant, G. & Szilvassy, S. J. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106, 1479–1487 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kollman, C. et al. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood 98, 2043–2051 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Wei, J., Xu, H., Davies, J. L. & Hemmings, G. P. Increase of plasma IL-6 concentration with age in healthy subjects. Life Sci. 51, 1953–1956 (1992).

    Article  CAS  PubMed  Google Scholar 

  111. Daynes, R. A. et al. Altered regulation of IL-6 production with normal aging. Possible linkage to the age-associated decline in dehydroepiandrosterone and its sulfated derivative. J. Immunol. 150, 5219–5230 (1993).

    CAS  PubMed  Google Scholar 

  112. Gori, A. M. et al. A proinflammatory state is associated with hyperhomocysteinemia in the elderly. Am. J. Clin. Nutr. 82, 335–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Salvioli, S. et al. Inflamm-aging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology. Curr. Pharm. Des. 12, 3161–3171 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Grimm, R. H. Jr, Neaton, J. D. & Ludwig, W. Prognostic importance of the white blood cell count for coronary, cancer, and all-cause mortality. JAMA 254, 1932–1937 (1985).

    Article  PubMed  Google Scholar 

  115. Schmaltz, H. N. et al. Chronic cytomegalovirus infection and inflammation are associated with prevalent frailty in community-dwelling older women. J. Am. Geriatr. Soc. 53, 747–754 (2005).

    Article  PubMed  Google Scholar 

  116. Leng, S. X., Xue, Q. L., Tian, J., Walston, J. D. & Fried, L. P. Inflammation and frailty in older women. J. Am. Geriatr. Soc. 55, 864–871 (2007).

    Article  PubMed  Google Scholar 

  117. Leng, S. X. et al. White blood cell counts, insulin-like growth factor-1 levels, and frailty in community-dwelling older women. J. Gerontol. A Biol. Sci. Med. Sci. 64, 499–502 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Leng, S. X. et al. Associations of neutrophil and monocyte counts with frailty in community-dwelling disabled older women: results from the Women's Health and Aging Studies I. Exp. Gerontol. 44, 511–516 (2009).

    Article  PubMed  Google Scholar 

  119. Ruggiero, C. et al. White blood cell count and mortality in the Baltimore Longitudinal Study of Aging. J. Am. Coll. Cardiol. 49, 1841–1850 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lumeng, C. N. et al. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J. Immunol. 187, 6208–6216 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Gupta, S., Su, H., Bi, R., Agrawal, S. & Gollapudi, S. Life and death of lymphocytes: a role in immunesenescence. Immun. Ageing 2, 12 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  122. van de Berg, P. J. et al. Human cytomegalovirus induces systemic immune activation characterized by a type 1 cytokine signature. J. Infect. Dis. 202, 690–699 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by National Institutes of Health grant DK080048 (J. Jameson), DK075718 (D. McKay), DK091136 (D. McKay), CIRM RM1-01709 (D. McKay), and Price Charities Foundation/Scripps Clinic and Green Hospital (D. McKay)

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided a substantial contribution to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Julie Jameson.

Ethics declarations

Competing interests

D. McKay and J. Jameson have received research funding from Novartis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKay, D., Jameson, J. Kidney transplantation and the ageing immune system. Nat Rev Nephrol 8, 700–708 (2012). https://doi.org/10.1038/nrneph.2012.242

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing