Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Oscillatory multiplexing of population codes for selective communication in the mammalian brain

Abstract

Mammalian brains exhibit population oscillations, the structures of which vary in time and space according to behavioural state. A proposed function of these oscillations is to control the flow of signals among anatomically connected networks. However, the nature of neural coding that may support selective communication that depends on oscillations has received relatively little attention. Here, we consider the role of multiplexing, whereby multiple information streams share a common neural substrate. We suggest that multiplexing implemented through periodic modulation of firing-rate population codes enables flexible reconfiguration of effective connectivity among brain areas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiplicative modulation from oscillatory dynamics.
Figure 2: Selective communication using time- and frequency-division multiplexing.
Figure 3: Communication through coherence as spread-spectrum multiplexing.
Figure 4: Network oscillations in behavioural tasks.

Similar content being viewed by others

References

  1. Whittington, M. A., Cunningham, M. O., LeBeau, F. E. N., Racca, C. & Traub, R. D. Multiple origins of the cortical gamma rhythm. Dev. Neurobiol. 71, 92–106 (2011).

    PubMed  Google Scholar 

  2. Wang, X. J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010).

    PubMed  Google Scholar 

  3. Brunel, N. & Hakim, V. Sparsely synchronized neuronal oscillations. Chaos 18, 015113 (2008).

    PubMed  Google Scholar 

  4. Tiesinga, P. & Sejnowski, T. J. Cortical enlightenment: are attentional gamma oscillations driven by ING or PING? Neuron 63, 727–732 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Buzsáki, G. & Wang, X.-J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. Varela, F., Lachaux, J. P., Rodríguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nature Rev. Neurosci. 2, 229–239 (2001).

    CAS  Google Scholar 

  7. Salinas, E. & Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nature Rev. Neurosci. 2, 539–550 (2001).

    CAS  Google Scholar 

  8. Schnitzler, A. & Gross, J. Normal and pathological oscillatory communication in the brain. Nature Rev. Neurosci. 6, 285–296 (2005).

    CAS  Google Scholar 

  9. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    PubMed  Google Scholar 

  10. Hoppensteadt, F. C. & Izhikevich, E. M. Thalamo-cortical interactions modeled by weakly connected oscillators: could the brain use FM radio principles? Biosystems 48, 85–94 (1998).

    CAS  PubMed  Google Scholar 

  11. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 221–224 (1997).

    Google Scholar 

  12. Losonczy, A., Makara, J. K. & Magee, J. C. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–441 (2008).

    CAS  PubMed  Google Scholar 

  13. Anderson, C. H. & Van Essen, D. C. Shifter circuits: a computational strategy for dynamic aspects of visual processing. Proc. Natl Acad. Sci. USA 84, 6297–6301 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Abbott, L. F. in 23 Problems in Systems Neuroscience (eds Van Hemmen, J. L. & Sejnowski, T. J.) 423–431 (Oxford Univ. Press, 2005).

    Google Scholar 

  15. Vogels, T. P. & Abbott, L. F. Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nature Neurosci. 12, 483–491 (2009).

    CAS  PubMed  Google Scholar 

  16. Lisman, J. E. & Idiart, M. A. Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995).

    CAS  PubMed  Google Scholar 

  17. Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–25 (1999).

    CAS  PubMed  Google Scholar 

  18. Panzeri, S., Brunel, N., Logothetis, N. K. & Kayser, C. Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 33, 111–120 (2010).

    CAS  PubMed  Google Scholar 

  19. Tallon-Baudry, C. The roles of gamma-band oscillatory synchrony in human visual cognition. Front. Biosci. 14, 321–332 (2009).

    Google Scholar 

  20. Lisman, J. E. & Jensen, O. The theta-gamma neural code. Neuron 77, 1002–1016 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Buzsáki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neurosci. 16, 130–138 (2013).

    PubMed  Google Scholar 

  22. Izhikevich, E. M. Resonate-and-fire neurons. Neural Netw. 14, 883–894 (2001).

    CAS  PubMed  Google Scholar 

  23. Rolls, E. T. & Treves, A. The neuronal encoding of information in the brain. Prog. Neurobiol. 95, 448–490 (2011).

    PubMed  Google Scholar 

  24. Shannon, C. E. Communication in the presence of noise. Proc. IRE 37, 10–21 (1949).

    Google Scholar 

  25. Marr, D. & Poggio, T. From understanding computation to understanding neural circuitry. Neurosci. Res. Prog. Bull. 15, 470–488 (1976).

    Google Scholar 

  26. Akam, T. & Kullmann, D. M. Efficient 'communication through coherence' requires oscillations structured to minimize interference between signals. PLoS Comput. Biol. 8, e1002760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schroeder, C. E. & Lakatos, P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 32, 9–18 (2009).

    CAS  PubMed  Google Scholar 

  28. Mitchell, S. J. & Silver, R. A. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38, 433–445 (2003).

    CAS  PubMed  Google Scholar 

  29. Chance, F. S., Abbott, L. F. & Reyes, A. D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002).

    CAS  PubMed  Google Scholar 

  30. Wyble, B. P., Linster, C. & Hasselmo, M. E. Size of CA1-evoked synaptic potentials is related to theta rhythm phase in rat hippocampus. J. Neurophysiol. 83, 2138–2144 (2000).

    CAS  PubMed  Google Scholar 

  31. Jensen, O. Information transfer between rhythmically coupled networks: reading the hippocampal phase code. Neural Comput. 13, 2743–2761 (2001).

    CAS  PubMed  Google Scholar 

  32. Masuda, N. Selective population rate coding: a possible computational role of gamma oscillations in selective attention. Neural Comput. 21, 3335–3362 (2009).

    PubMed  Google Scholar 

  33. Wildie, M. & Shanahan, M. Establishing communication between neuronal populations through competitive entrainment. Front. Comput. Neurosci. 5, 62 (2012).

    PubMed  PubMed Central  Google Scholar 

  34. Akam, T. & Kullmann, D. Oscillations and filtering networks support flexible routing of information. Neuron 67, 308–320 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ledoux, E. & Brunel, N. Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs. Front. Comput. Neurosci. 5, 25 (2011).

    PubMed  PubMed Central  Google Scholar 

  36. Niebur, E., Koch, C. & Rosin, C. An oscillation-based model for the neuronal basis of attention. Vis. Res. 33, 2789–2802 (1993).

    CAS  PubMed  Google Scholar 

  37. Jensen, O. & Colgin, L. L. Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 11, 267–269 (2007).

    PubMed  Google Scholar 

  38. Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. Viterbi, A. J. CDMA: Principles of Spread Spectrum Communication (Addison-Wesley Norwell, 1995).

    Google Scholar 

  40. O'Keefe, J. Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–109 (1976).

    CAS  PubMed  Google Scholar 

  41. Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).

    CAS  PubMed  Google Scholar 

  42. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    CAS  PubMed  Google Scholar 

  43. Huxter, J., Burgess, N. & O'Keefe, J. Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425, 828–832 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Huxter, J. R., Senior, T. J., Allen, K. & Csicsvari, J. Theta phase-specific codes for two-dimensional position, trajectory and heading in the hippocampus. Nature Neurosci. 11, 587–594 (2008).

    CAS  PubMed  Google Scholar 

  45. Eichenbaum, H., Kuperstein, M., Fagan, A. & Nagode, J. Cue-sampling and goal-approach correlates of hippocampal unit activity in rats performing an odor-discrimination task. J. Neurosci. 7, 716–732 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wood, E. R., Dudchenko, P. A., Robitsek, R. J. & Eichenbaum, H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27, 623–633 (2000).

    CAS  PubMed  Google Scholar 

  47. Fyhn, M., Molden, S., Hollup, S., Moser, M.-B. & Moser, E. I. Hippocampal neurons responding to first-time dislocation of a target object. Neuron 35, 555–566 (2002).

    CAS  PubMed  Google Scholar 

  48. O'Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    CAS  PubMed  Google Scholar 

  49. Diba, K. & Buzsáki, G. Hippocampal network dynamics constrain the time lag between pyramidal cells across modified environments. J. Neurosci. 28, 13448–13456 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dragoi, G. & Buzsáki, G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50, 145–158 (2006).

    CAS  PubMed  Google Scholar 

  51. Harris, K. D. et al. Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature 417, 738–741 (2002).

    CAS  PubMed  Google Scholar 

  52. Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsáki, G. Internally generated cell assembly sequences in the rat hippocampus. Science 321, 1322–1327 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jensen, O. & Lisman, J. E. Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall. Learn. Mem. 3, 264–278 (1996).

    CAS  PubMed  Google Scholar 

  54. Bi, G. & Poo, M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Debanne, D., Gähwiler, B. H. & Thompson, S. M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. 507, 237–247 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hasselmo, M. E., Bodelón, C. & Wyble, B. P. A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14, 793–817 (2002).

    PubMed  Google Scholar 

  57. Huerta, P. T. & Lisman, J. E. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 364, 723–725 (1993).

    CAS  PubMed  Google Scholar 

  58. Pavlides, C., Greenstein, Y. J., Grudman, M. & Winson, J. Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of theta-rhythm. Brain Res. 439, 383–387 (1988).

    CAS  PubMed  Google Scholar 

  59. Hyman, J. M., Wyble, B. P., Goyal, V., Rossi, C. A. & Hasselmo, M. E. Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J. Neurosci. 23, 11725–11731 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Raghavachari, S. et al. Gating of human theta oscillations by a working memory task. J. Neurosci. 21, 3175–3183 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Raghavachari, S. et al. Theta oscillations in human cortex during a working-memory task: evidence for local generators. J. Neurophysiol. 95, 1630–1638 (2006).

    CAS  PubMed  Google Scholar 

  62. Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J. & Madsen, J. R. Theta and gamma oscillations during encoding predict subsequent recall. J. Neurosci. 23, 10809–10814 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, H., Simpson, G. V., Logothetis, N. K. & Rainer, G. Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 45, 147–156 (2005).

    CAS  PubMed  Google Scholar 

  64. Liebe, S., Hoerzer, G. M., Logothetis, N. K. & Rainer, G. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nature Neurosci. 15, 456–462 (2012).

    CAS  PubMed  Google Scholar 

  65. Murthy, V. N. & Fetz, E. E. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl. Acad. Sci. USA 89, 5670–5674 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G. & Gaál, G. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J. Neurophysiol. 79, 159–173 (1998).

    CAS  PubMed  Google Scholar 

  67. Baker, S. N., Kilner, J. M., Pinches, E. M. & Lemon, R. N. The role of synchrony and oscillations in the motor output. Exp. Brain Res. 128, 109–117 (1999).

    CAS  PubMed  Google Scholar 

  68. Sanes, J. N. & Donoghue, J. P. Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc. Natl. Acad. Sci. USA 90, 4470–4474 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Pesaran, B., Nelson, M. J. & Andersen, R. A. Free choice activates a decision circuit between frontal and parietal cortex. Nature 453, 406–409 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Courtemanche, R., Fujii, N. & Graybiel, A. M. Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J. Neurosci. 23, 11741–11752 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Leventhal, D. K. et al. Basal ganglia beta oscillations accompany cue utilization. Neuron 73, 523–536 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Engel, A. K. & Fries, P. Beta-band oscillations — signalling the status quo? Curr. Opin. Neurobiol. 20, 156–165 (2010).

    CAS  PubMed  Google Scholar 

  73. Bosman, C. A. et al. Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75, 875–888 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Grothe, I., Neitzel, S. D., Mandon, S. & Kreiter, A. K. Switching neuronal inputs by differential modulations of gamma-band phase-coherence. J. Neurosci. 32, 16172–16180 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bosman, C. A., Womelsdorf, T., Desimone, R. & Fries, P. A. Microsaccadic rhythm modulates gamma-band synchronization and behavior. J. Neurosci. 29, 9471–9480 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Markov, N. T. et al. Weight consistency specifies regularities of macaque cortical networks. Cereb. Cortex 21, 1254–1272 (2011).

    CAS  PubMed  Google Scholar 

  77. Ungerleider, L. G., Galkin, T. W., Desimone, R. & Gattass, R. Cortical connections of area V4 in the macaque. Cereb. Cortex 18, 477–499 (2008).

    PubMed  Google Scholar 

  78. Stevenson, I. H. & Kording, K. P. How advances in neural recording affect data analysis. Nature Neurosci. 14, 139–142 (2011).

    CAS  PubMed  Google Scholar 

  79. Akam, T., Oren, I., Mantoan, L., Ferenczi, E. & Kullmann, D. M. Oscillatory dynamics in the hippocampus support dentate gyrus–CA3 coupling. Nature Neurosci. 15, 763–768 (2012).

    CAS  PubMed  Google Scholar 

  80. Thut, G. et al. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr. Biol. 21, 1176–1185 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, J. H. et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Polanía, R., Nitsche, M. A., Korman, C., Batsikadze, G. & Paulus, W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr. Biol. 22, 1314–1318 (2012).

    PubMed  Google Scholar 

  84. Berger, H. Über das Elektrenkephalogramm des Menschen. Arch. Psychiatrie Nerv. 87, 527–570 (1929) (in German).

    Google Scholar 

  85. Izhikevich, E. M., Desai, N. S., Walcott, E. C. & Hoppensteadt, F. C. Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci. 26, 161–167 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Atallah, N. Burgess, M. van der Meer, I. Oren and K. E. Volynski for comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri M. Kullmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Aliasing

When a signal is sampled at a rate that is too slow to capture its variation, the contribution of high-frequency components to the sampled values is ambiguous, leading to noise when the signal is reconstructed from the samples.

Amplitude

A measure of how much a periodic signal varies over the course of its cycle. Amplitude can be quantified in various ways, including peak-to-peak amplitude — that is, the difference between the highest and lowest value reached by the signal during the cycle.

Communication through coherence

(CTC). The CTC hypothesis holds that coherence between oscillations in two brain regions enables selective communication between them. Coherence is a statistic used to evaluate the similarity of two signals as a function of frequency.

Effective connectivity

The influence that one neural system exerts over another.

Integrate-and-fire neurons

Simplified neuron models used widely in network simulations in which the biophysical processes generating the action potential are not explicitly represented. Instead, the neuron is said to have spiked whenever the membrane potential crosses a threshold value.

Local field potential

(LFP). The voltage signal recorded from extracellular space in neural tissue. The lower frequency components (<250 Hz) are thought primarily to reflect synaptic activity within a few hundred micrometres of the electrode.

Poisson neurons

A stochastic neuron model in which the spike train is generated by a Poisson process, with spike probability specified entirely by the firing rate, which is in general a function of time.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akam, T., Kullmann, D. Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nat Rev Neurosci 15, 111–122 (2014). https://doi.org/10.1038/nrn3668

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3668

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing