Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules

Key Points

  • Organophosphonates are ancient molecules that predate phosphates as the most abundant form of P in the biosphere.

  • They contain the chemically stable C–P bond.

  • Synthetic phosphonates have a wide range of technological applications in the agricultural, chemical and pharmaceutical industries.

  • Biogenic phosphonates provide alternative nutrient sources for organisms in oligotrophic environments, thereby playing a central role in global P cycling.

  • There have been several recent significant advances in our understanding of the biochemistry and genetics of microbial phosphonate metabolism, as well as insights into the part played by these compounds and the organisms engaged in their environmental turnover.

Abstract

Organophosphonates are ancient molecules that contain the chemically stable C–P bond, which is considered a relic of the reducing atmosphere on primitive earth. Synthetic phosphonates now have a wide range of applications in the agricultural, chemical and pharmaceutical industries. However, the existence of C–P compounds as contemporary biogenic molecules was not discovered until 1959, with the identification of 2-aminoethylphosphonic acid in rumen protozoa. Here, we review advances in our understanding of the biochemistry and genetics of microbial phosphonate metabolism, and discuss the role of these compounds and of the organisms engaged in their turnover within the P cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of a range of biogenic organophosphonates.
Figure 2: Phosphonoacetaldehyde is the central building block for organophosphonate assembly.
Figure 3: Model of phosphate regulon signal transduction.
Figure 4: The reaction catalysed by C–P lyase, and the proposed mechanism of enzyme action.
Figure 5: Pathways for the microbial metabolism of phosphonates.
Figure 6: The global P cycle.

Similar content being viewed by others

References

  1. Torriani-Gorini, A. Phosphate metabolism and cellular regulation in microorganisms (American Society for Microbiology, 1987).

    Google Scholar 

  2. Jia, Y., Lu, Z. B., Huang, K., Herzberg, O. & Dunaway-Mariano, D. Insight into the mechanism of phosphoenolpyruvate mutase catalysis derived from site-directed mutagenesis studies of active site residues. Biochemistry 38, 14165–14173 (1999).

    CAS  PubMed  Google Scholar 

  3. Quin, L. D. A. Guide to Organophosphorus Chemistry (John Wiley, 2000).

    Google Scholar 

  4. Lacoste, A. M., Dumora, C. & Cassaigne, A. Cleavage of the carbon to phosphorus bond of organophosphonates by bacterial systems. Biochem. Adv. (Life Sci.) 8, 97–109 (1989).

    Google Scholar 

  5. Horiguchi, M. & Kandatsu, M. Isolation of 2-aminoethane phosphonic acid from rumen protozoa. Nature 184, 901–902 (1959).

    CAS  PubMed  Google Scholar 

  6. Hilderbrand, R. L. & Henderson, T. G. Phosphonic Acids in Nature (ed. Hilderbrand, R. L.) (CRC Press Inc., 1983).

    Google Scholar 

  7. Metcalf, W. W. & van der Donk, W. A. Biosynthesis of phosphonic and phosphinic acid natural products. Annu. Rev. Biochem. 78, 65–94 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hendlin, D. et al. Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science 166, 122–123 (1969).

    CAS  PubMed  Google Scholar 

  9. Park, B. K., Hirota, A. & Sakai, H. Studies on new antimetabolite produced by microorganism 2-amino- 5-phosphono-3-pentenoic acid, a new amino-acid from N-1409 substance, an antagonist of threonine. Agric. Biol. Chem. 40, 1905–1906 (1976).

    CAS  Google Scholar 

  10. Bayer, E. et al. Metabolic products of microorganisms. 98. Phosphinothricin and phosphinothricyl-alanyl-analine. Helv. Chim. Acta 55, 224–239 (1972).

    CAS  PubMed  Google Scholar 

  11. Quinn, J. P., Kulakova, A. N., Cooley, N. A. & McGrath, J. W. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling. Environ. Microbiol. 9, 2392–2400 (2007). This review describes phosphonate turnover in the marine environment and provides a bioinformatic analysis of the distribution of both C–P lyase and C–P hydrolases.

    CAS  PubMed  Google Scholar 

  12. Bowman, E., McQueney, M., Barry, R. J. & Dunaway-Mariano, D. Catalysis and thermodynamics of the phosphoenolpyruvate phosphonopyruvate rearrangement. Entry into the phosphonate class of naturally-occurring organo-phosphorus compounds. J. Am. Chem. Soc. 110, 5575–5576 (1988).

    CAS  Google Scholar 

  13. Seidel, H. M., Freeman, S., Seto, H. & Knowles, J. R. Phosphonate biosynthesis: isolation of the enzyme responsible for the formation of a carbon–phosphorus bond. Nature 335, 457–458 (1988).

    CAS  PubMed  Google Scholar 

  14. Zhang, G. F., Dai, J. Y., Lu, Z. B. & Dunaway-Mariano, D. The phosphonopyruvate decarboxylase from Bacteroides fragilis. J. Biol. Chem. 278, 41302–41308 (2003).

    CAS  PubMed  Google Scholar 

  15. Barry, R. J., Bowman, E., McQueney, M. & Dunaway-Mariano, D. Elucidation of the 2-aminoethylphosphonate biosynthetic pathway in Tetrahymena pyriformis. Biochem. Biophys. Res. Commun. 153, 177–182 (1988).

    CAS  PubMed  Google Scholar 

  16. Hsieh, Y. J. & Wanner, B. L. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13, 198–203 (2010). This review provides a comprehensive overview of how E. coli detects environmental inorganic orthophosphate to regulate genes of the Pho regulon.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lamarche, M. G., Wanner, B. L., Crepin, S. & Harel, J. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461–473 (2008).

    CAS  PubMed  Google Scholar 

  18. Yuan, Z. C., Zaheer, R., Morton, R. & Finan, T. M. Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res. 34, 2686–2697 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Qi, Y., Kobayashi, Y. & Hulett, F. M. The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the Pho regulon. J. Bacteriol. 179, 2534–2539 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wanner, B. L. Molecular genetics of carbon-phosphorus bond cleavage in bacteria. Biodegradation 5, 175–184 (1994).

    CAS  PubMed  Google Scholar 

  21. McGrath, J. W., Ternan, N. G. & Quinn, J. P. Utilization of organophosphonates by environmental microorganisms. Lett. Appl. Microbiol. 24, 69–73 (1997).

    CAS  Google Scholar 

  22. Wackett, L. P., Shames, S. L., Venditti, C. P. & Walsh, C. T. Bacterial carbon-phosphorus lyase: products, rates, and regulation of phosphonic and phosphinic acid metabolism. J. Bacteriol. 169, 710–717 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ternan, N. G., Mc Grath, J. W., Mc Mullan, G. & Quinn, J. P. Organophosphonates: occurrence, synthesis and biodegradation by microorganisms. World J. Microbiol. Biotechnol. 14, 635–647 (1998).

    CAS  Google Scholar 

  24. Chen, C. M., Ye, Q. Z., Zhu, Z. M., Wanner, B. L. & Walsh, C. T. Molecular biology of carbon–phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C–P lyase activity in Escherichia coli B. J. Biol. Chem. 265, 4461–4471 (1990).

    CAS  PubMed  Google Scholar 

  25. Yakovleva, G. M., Kim, S. K. & Wanner, B. L. Phosphate-independent expression of the carbon-phosphorus lyase activity of Escherichia coli. Appl. Microbiol. Biotechnol. 49, 573–578 (1998).

    CAS  PubMed  Google Scholar 

  26. Avila, L. Z., Draths, K. M. & Frost, J. W. Metabolites associated with organophosphonate C–P bond-cleavage: chemical synthesis and microbial-degradation of [32P]. Bioorg. Med. Chem. Lett. 1, 51–54 (1991).

    CAS  Google Scholar 

  27. Hove-Jensen, B., McSorley, F. R. & Zechel, D. L. Catabolism and detoxification of 1-aminoalkylphosphonic acids: N-acetylation by the phnO gene product. PLoS ONE 7, e46416 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. He, S. M. et al. Structure and mechanism of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway. Biochemistry 50, 8603–8615 (2011).

    CAS  PubMed  Google Scholar 

  29. Jochimsen, B. et al. Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway. Proc. Natl Acad. Sci. USA 108, 11393–11398 (2011). This article is the first to report the purification of a soluble complex of the five proteins central to the reaction catalysed by bacterial C–P lyase.

    CAS  PubMed  Google Scholar 

  30. Kamat, S. S., Williams, H. J. & Raushel, F. M. Intermediates in the transformation of phosphonates to phosphate by bacteria. Nature 480, 570–573 (2011). This study is the first to achieveC–P lyase activity in vitro , and the authors propose an enzymatic mechanism for this complex reaction.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Q. & van der Donk, W. A. Answers to the carbon–phosphorus lyase conundrum. Chembiochem 13, 627–629 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gebhard, S. & Cook, G. M. Differential regulation of high-affinity phosphate transport systems of Mycobacterium smegmatis: identification of PhnF, a repressor of the phnDCE operon. J. Bacteriol. 190, 1335–1343 (2008).

    CAS  PubMed  Google Scholar 

  33. Hove-Jensen, B., McSorley, F. R. & Zechel, D. L. Physiological role of phnP-specified phosphoribosyl cyclic phosphodiesterase in catabolism of organophosphonic acids by the carbon–phosphorus lyase pathway. J. Am. Chem. Soc. 133, 3617–3624 (2011).

    CAS  PubMed  Google Scholar 

  34. Villarreal-Chiu, J. F., Quinn, J. P. & McGrath, J. W. The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment. Front. Microbiol. 3, 19 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kertesz, M., Elgorriaga, A. & Amrhein, N. Evidence for two distinct phosphonate-degrading enzymes (C-P lyases) in Arthrobacter sp. GLP-1. Biodegradation 2, 53–59 (1991).

    CAS  PubMed  Google Scholar 

  36. Sviridov, A. V. et al. Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Appl. Microbiol. Biotechnol. 93, 787–796 (2012).

    CAS  PubMed  Google Scholar 

  37. Dyhrman, S. T. et al. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439, 68–71 (2006). This report describes the induction of C–P lyase genes in T. erythraeum str. IMS101 under low-phosphate conditions. Expression of these genes might help to explain the prevalence of Trichodesmium spp. in low-phosphate, oligotrophic marine systems.

    CAS  PubMed  Google Scholar 

  38. Karl, D. M. et al. Aerobic production of methane in the sea. Nature Geosci. 1, 473–478 (2008). This work shows that C–P lyase catalyses the aerobic production of methane from methylphosphonate in phosphate-stressed marine waters, thereby uncovering an additional source of methane efflux from the oceans.

    CAS  Google Scholar 

  39. Hori, T. & Sugiyama, M. Use of hydrous iron(III) oxide in a concentration step for the determination of trace amounts of organophosphorus compounds in aqueous-solutions. Analyst 117, 893–897 (1992).

    CAS  Google Scholar 

  40. Quin, L. D. & Quin, G. S. Screening for carbon-bound phosphorus in marine animals by high-resolution P-31-NMR spectroscopy: coastal and hydrothermal vent invertebrates. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 128, 173–185 (2001).

    CAS  PubMed  Google Scholar 

  41. Kim, A., Kim, J., Martin, B. M. & Dunaway-Mariano, D. Isolation and characterization of the carbon–phosphorus bond-forming enzyme phosphoenolpyruvate mutase from the mollusk Mytilus edulis. J. Biol. Chem. 273, 4443–4448 (1998).

    CAS  PubMed  Google Scholar 

  42. La Nauze, J. M. & Rosenberg, H. The breakdown of aminoethylphosphonate by cell-free extracts of Bacillus cereus. Biochim. Biophys. Acta 148, 811–813 (1967). This article provides the first description of the microbial degradation of 2-AEP.

    CAS  Google Scholar 

  43. Lacoste, A. M. & Neuzil, E. Transamination of 2-aminoethylphosphonic acid by Pseudomonas aeruginosa. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D 269, 254–257 (1969).

    CAS  PubMed  Google Scholar 

  44. La Nauze, J. M., Coggins, J. R. & Dixon, H. B. Aldolase-like imine formation in the mechanism of action of phosphonoacetaldehyde hydrolase. Biochem. J. 165, 409–411 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dumora, C., Lacoste, A. M. & Cassaigne, A. Phosphonoacetaldehyde hydrolase from Pseudomonas aeruginosa: purification, properties and comparison with Bacillus cereus enzyme. Biochim. Biophys. Acta 997, 193–198 (1989).

    CAS  PubMed  Google Scholar 

  46. Morais, M. C. et al. The crystal structure of Bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily. Biochemistry 39, 10385–10396 (2000).

    CAS  PubMed  Google Scholar 

  47. Baker, A. S. et al. Insights into the mechanism of catalysis by the P–C bond-cleaving enzyme phosphonoacetaldehyde hydrolase derived from gene sequence analysis and mutagenesis. Biochemistry 37, 9305–9315 (1998).

    CAS  PubMed  Google Scholar 

  48. Jiang, W. H., Metcalf, W. W., Lee, K. S. & Wanner, B. L. Molecular-cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2. J. Bacteriol. 177, 6411–6421 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ternan, N. G. & Quinn, J. P. Phosphate starvation-independent 2-aminoethylphosphonic acid biodegradation in a newly isolated strain of Pseudomonas putida NG2. Syst. Appl. Microbiol. 21, 346–352 (1998).

    CAS  PubMed  Google Scholar 

  50. McGrath, J. W., Wisdom, G. B., McMullan, G., Larkin, M. J. & Quinn, J. P. The purification and properties of phosphonoacetate hydrolase, a novel carbon–phosphorus bond-cleaving enzyme from Pseudomonas fluorescens 23F Eur. J. Biochem. 234, 225–230 (1995).

    CAS  PubMed  Google Scholar 

  51. Kim, A. et al. Divergence of chemical function in the alkaline phosphatase superfamily: structure and mechanism of the P–C bond cleaving enzyme phosphonoacetate hydrolase. Biochemistry 50, 3481–3494 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Agarwal, V., Borisova, S. A., Metcalf, W. W., van der Donk, W. A. & Nair, S. K. Structural and mechanistic insights into C-P bond hydrolysis by phosphonoacetate hydrolase. Chem. Biol. 18, 1230–1240 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. McMullan, G. & Quinn, J. P. Detection of a novel carbon-phosphorus bond-cleavage activity in cell-free-extracts of an environmental Pseudomonas fluorescens isolate. Biochem. Biophys. Res. Commun. 184, 1022–1027 (1992).

    CAS  PubMed  Google Scholar 

  54. McMullan, G., Harrington, F. & Quinn, J. P. Metabolism of phosphonoacetate as the sole carbon and phosphorus source by an environmental bacterial isolate. Appl. Environ. Microbiol. 58, 1364–1366 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kulakova, A. N., Kulakov, L. A., McGrath, J. W. & Quinn, J. P. The construction of a whole-cell biosensor for phosphonoacetate, based on the LysR-like transcriptional regulator PhnR from Pseudomonas fluorescens 23F. Microb. Biotechnol. 2, 234–240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kulakova, A. N. et al. Structural and functional analysis of the phosphonoacetate hydrolase (phnA) gene region in Pseudomonas fluorescens 23F. J. Bacteriol. 183, 3268–3275 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Borisova, S. A. et al. Genetic and biochemical characterization of a pathway for the degradation of 2-aminoethylphosphonate in Sinorhizobium meliloti 1021. J. Biol. Chem. 286, 22283–22290 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cooley, N. A. et al. Phosphonoacetate biosynthesis: in vitro detection of a novel NADP+ dependent phosphonoacetaldehyde oxidizing activity in cell extracts of a marine Roseobacter. Microbiology 80, 335–340 (2011).

    CAS  Google Scholar 

  59. Martinez, A., Tyson, G. W. & DeLong, E. F. Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses. Environ. Microbiol. 12, 222–238 (2010).

    CAS  PubMed  Google Scholar 

  60. McSorley, F. R. et al. PhnY and PhnZ comprise a new oxidative pathway for enzymatic cleavage of a carbon–phosphorus bond. J. Am. Chem. Soc. 134, 8364–8367 (2012).

    CAS  PubMed  Google Scholar 

  61. Mendz, G. L., Megraud, F. & Korolik, V. Phosphonate catabolism by Campylobacter spp. Arch. Microbiol. 183, 113–120 (2005).

    CAS  PubMed  Google Scholar 

  62. Ford, J. L., Kaakoush, N. O. & Mendz, G. L. Phosphonate metabolism in Helicobacter pylori. Antonie van Leeuwenhooek 97, 51–60 (2010).

    CAS  Google Scholar 

  63. Gomez-Garcia, M. R., Davison, M., Blain-Hartnung, M., Grossman, A. R. & Bhaya, D. Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats. ISME J. 5, 141–149 (2011).

    CAS  PubMed  Google Scholar 

  64. Horigane, A., Horiguchi, M. & Matsumoto, T. Metabolism of 2-amino-3-phosphono[3-14]. Biochim. Biophys. Acta 618, 383–388 (1980).

    CAS  PubMed  Google Scholar 

  65. Ternan, N. G., McGrath, J. W. & Quinn, J. P. Phosphoenolpyruvate phosphomutase activity in an L-phosphonoalanine-mineralizing strain of Burkholderia cepacia. Appl. Environ. Microbiol. 64, 2291–2294 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kulakova, A. N. et al. Expression of the phosphonoalanine-degradative gene cluster from Variovorax sp. Pal2 is induced by growth on phosphonoalanine and phosphonopyruvate. FEMS Microbiol. Lett. 292, 100–106 (2009).

    CAS  PubMed  Google Scholar 

  67. Kulakova, A. N., Wisdom, G. B., Kulakov, L. A. & Quinn, J. P. The purification and characterization of phosphonopyruvate hydrolase, a novel carbon-phosphorus bond cleavage enzyme from Variovorax sp. Pal2. J. Biol. Chem. 278, 23426–23431 (2003).

    CAS  PubMed  Google Scholar 

  68. Chen, C. C. H. et al. Structure and kinetics of phosphonopyruvate hydrolase from Variovorax sp.Pal2: new insight into the divergence of catalysis within the PEP mutase/isocitrate lyase superfamily. Biochemistry 45, 11491–11504 (2006).

    CAS  PubMed  Google Scholar 

  69. McGrath, J. W., Hammerschmidt, F. & Quinn, J. P. Biodegradation of phosphonomycin by Rhizobium huakuii PMY1. Appl. Environ. Microbiol. 64, 356–358 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. McGrath, J. W., Hammerschmidt, F., Preusser, W., Quinn, J. P. & Schweifer, A. Studies on the biodegradation of fosfomycin: growth of Rhizobium huakuii PMY1 on possible intermediates synthesised chemically. Org. Biomol. Chem. 7, 1944–1953 (2009).

    CAS  PubMed  Google Scholar 

  71. McGrath, J. W. et al. Studies on the biodegradation of fosfomycin: synthesis of 13C-labeled intermediates, feeding experiments with Rhizobium huakuii PMY1, and isolation of labeled amino acids from cell mass by HPLC. Chemistry 17, 13341–13348 (2011).

    CAS  PubMed  Google Scholar 

  72. Paytan, A. & McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev. 107, 563–576 (2007).

    CAS  PubMed  Google Scholar 

  73. Benitez-Nelson, C. R., O'Neill, L., Kolowith, L. C., Pellechia, P. & Thunell, R. Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin. Limnol. Oceanogr. 49, 1593–1604 (2004).

    CAS  Google Scholar 

  74. Kolowith, L. C., Ingall, E. D. & Benner, R. Composition and cycling of marine organic phosphorus. Limnol. Oceanogr. 46, 309–320 (2001).

    CAS  Google Scholar 

  75. Grote, J. et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 3, e00252–12 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bjorkman, K. M. & Karl, D. M. Bioavailability of dissolved organic phosphorus in the euphotic zone at station ALOHA, North Pacific Subtropical Gyre. Limnol. Oceanogr. 48, 1049–1057 (2003).

    CAS  Google Scholar 

  77. Luo, H. W., Zhang, H. M., Long, R. A. & Benner, R. Depth distributions of alkaline phosphatase and phosphonate utilization genes in the North Pacific Subtropical Gyre. Aquat. Microb. Ecol. 62, 61–69 (2011).

    Google Scholar 

  78. Luo, H., Benner, R., Long, R. A. & Hu, J. Subcellular localization of marine bacterial alkaline phosphatases. Proc. Natl Acad. Sci. USA 106, 21219–21223 (2009).

    CAS  PubMed  Google Scholar 

  79. Clark, L. L., Ingall, E. D. & Benner, R. Marine phosphorus is selectively remineralized. Nature 393, 426–426 (1998).

    CAS  Google Scholar 

  80. Dyhrman, S. T., Benitez-Nelson, C. R., Orchard, E. D., Haley, S. T. & Pellechia, P. J. A microbial source of phosphonates in oligotrophic marine systems. Nature Geosci. 2, 696–699 (2009).

    CAS  Google Scholar 

  81. Ilikchyan, I. N., McKay, R. M. L., Zehr, J. P., Dyhrman, S. T. & Bullerjahn, G. S. Detection and expression of the phosphonate transporter gene phnD in marine and freshwater picocyanobacteria. Environ. Microbiol. 11, 1314–1324 (2009).

    CAS  PubMed  Google Scholar 

  82. Gilbert, J. A. et al. Potential for phosphonoacetate utilization by marine bacteria in temperate coastal waters. Environ. Microbiol. 11, 111–125 (2009).

    CAS  PubMed  Google Scholar 

  83. Thomas, S. et al. Evidence for phosphonate usage in the coral holobiont. ISME J. 4, 459–461 (2010).

    CAS  PubMed  Google Scholar 

  84. Metcalf, W. W. et al. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science 337, 1104–1107 (2012). This paper provides evidence for the production of methylphosphonate by the marine archaeon N. maritimus , a finding that might help to further resolve the oceanic methane paradox.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nowack, B. Environmental chemistry of phosphonates. Water Res. 37, 2533–2546 (2003).

    CAS  PubMed  Google Scholar 

  86. Gledhill, W. E. & Feijtel, T. C. in The Handbook of Environmental Chemistry Vol. 3 part F (ed. Hutzinger, O.) 261–285 (Springer, 1992).

    Google Scholar 

  87. Blackburn, G. M. Phosphonates as analogs of biological phosphates. Chem. Ind. 7, 134–138 (1981).

    Google Scholar 

  88. Duke, S. O. & Powles, S. B. Glyphosate: a once-in-a-century herbicide. Pest Manage. Sci. 64, 319–325 (2008).

    CAS  Google Scholar 

  89. Helander, M., Saloniemi, I. & Saikkonen, K. Glyphosate in northern ecosystems. Trends Plant Sci. 17, 569–574 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank their present and former laboratory colleagues and their external collaborators for many helpful and stimulating discussions on phosphonate metabolism over many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. McGrath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Author's homepage

ENZYME

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGrath, J., Chin, J. & Quinn, J. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nat Rev Microbiol 11, 412–419 (2013). https://doi.org/10.1038/nrmicro3011

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3011

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology