Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?

Key Points

  • The ideal organism for biofuel production will possess high substrate use and processing capacities, fast and deregulated pathways of sugar transport, good tolerances to inhibitors and product, and high metabolic fluxes and will produce a single fermentation product. It is unclear whether such an organism will be engineered using a native isolated strain or a recombinant model organism as the starting point.

  • Ethanol and other alternative, next-generation biofuels all rely on the application of metabolic engineering principles to create an industrially relevant organism.

  • The discovery of additional diverse pathways through bioprospecting methods and new strain isolation will certainly improve prospects for further optimizing microorganisms and play an important part in developing biofuel production systems.

  • Advances in synthetic biology provide a valuable technology, enabling better diversification of the biofuel-type molecules that are produced in standard model organisms.

  • The divergent and often competing metabolic pathways that are required for the conversion of the relevant carbohydrates increase the challenge of finding or engineering one such superior organism. Therefore, it is important to consider the potential of using multiple engineered organisms to accomplish the goal of biofuels production.

  • The future of bioprocessing (whether biofuels or other chemicals) will be faced with the choice between exploiting innate cellular capacity and importing biosynthetic potential.

Abstract

The ideal microorganism for biofuel production will possess high substrate utilization and processing capacities, fast and deregulated pathways for sugar transport, good tolerance to inhibitors and product, and high metabolic fluxes and will produce a single fermentation product. It is unclear whether such an organism will be engineered using a native, isolated strain or a recombinant, model organism as the starting point. The choice between engineering natural function and importing biosynthetic capacity is affected by current progress in metabolic engineering and synthetic biology. This Review highlights some of the factors influencing the above decision, in light of current advances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biofuel production by microorganisms.
Figure 2: Two routes to xylose assimilation.

Similar content being viewed by others

References

  1. Hill, J., Nelson, E., Tilman, D., Polasky, S. & Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl Acad. Sci. USA 103, 11206–11210 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lynd, L. et al. Energy returns on ethanol production. Science 312, 1746–1748 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Pimentel, D. & Lal, R. Biofuels and the environment. Science 317, 897–898 (2007).

    CAS  PubMed  Google Scholar 

  4. Pimentel, D., Patzek, T. & Cecil, G. Ethanol production: energy, economic, and environmental losses. Rev. Environ. Contam. Toxicol. 189, 25–41 (2007).

    CAS  PubMed  Google Scholar 

  5. Durre, P. Biobutanol: an attractive biofuel. Biotechnol. J. 2, 1525–1534 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Withers, S. T., Gottlieb, S. S., Lieu, B., Newman, J. D. & Keasling, J. D. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl. Environ. Microbiol. 73, 6277–6283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008). This work uses native amino acid pathways to produce a wide array of non-naturally occurring higher alcohols, especially highly energetic branched chain alcohols.

    Article  CAS  PubMed  Google Scholar 

  8. Atsumi, S. et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10, 305–311 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Kalscheuer, R., Stolting, T. & Steinbuchel, A. Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152, 2529–2536 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Keasling, J. D. & Chou, H. Metabolic engineering delivers next-generation biofuels. Nature Biotech. 26, 298–299 (2008).

    Article  CAS  Google Scholar 

  11. Maeda, T., Sanchez-Torres, V. & Wood, T. Metabolic engineering to enhance bacterial hydrogen production. Microb. Biotechnol. 1, 30–39 (2008).

    CAS  PubMed  Google Scholar 

  12. McKendry, P. Energy production from biomass (Part 3): gasification technologies. Bioresour. Technol. 83, 55–63 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Henstra, A. M., Sipma, J., Rinzema, A. & Stams, A. J. Microbiology of synthesis gas fermentation for biofuel production. Curr. Opin. Biotechnol. 18, 200–206 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Huber, G. W., Chheda, J. N., Barrett, C. J. & Dumesic, J. A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308, 1446–1450 (2005). This report presents methods for non-microbial conversion of biomass sugars into alkanes and other potential fuels and chemicals.

    Article  CAS  PubMed  Google Scholar 

  15. Roman-Leshkov, Y., Barrett, C. J., Liu, Z. Y. & Dumesic, J. A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447, 982–985 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 315, 801–804 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Piskur, J., Rozpedowska, E., Polakova, S., Merico, A. & Compagno, C. How did Saccharomyces evolve to become a good brewer? Trends Genet. 22, 183–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Geib, S. M. et al. Lignin degradation in wood-feeding insects. Proc. Natl Acad. Sci. USA 105, 12932–12937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Warnecke, F. et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560–565 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Temudo, M., Muyzer, G., Kleerebezem, R. & van Loosdrecht, M. Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. Appl. Microbiol. Biotechnol. 80, 1121–1130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar, R., Singh, S. & Singh, O. V. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35, 377–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Martinez, D. et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotech. 26, 553–560 (2008). This article describes the genome sequence and characterization of a key organism typically used to provide enzymes for biomass degradation.

    Article  CAS  Google Scholar 

  23. Hammel, K. E. & Cullen, D. Role of fungal peroxidases in biological ligninolysis. Curr. Opin. Plant Biol. 11, 349–355 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Makela, M. R., Hilden, K. S., Hakala, T. K., Hatakka, A. & Lundell, T. K. Expression and molecular properties of a new laccase of the white rot fungus Phlebia radiata grown on wood. Curr. Genet. 50, 323–333 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Ryu, S. H., Lee, A. Y. & Kim, M. Molecular characteristics of two laccase from the Basidiomycete fungus Polyporus brumalis. J. Microbiol. 46, 62–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Singh, D. & Chen, S. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl. Microbiol. Biotechnol. 81, 399–417 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Warnick, T. A., Methe, B. A. & Leschine, S. B. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int. J. Syst. Evol. Microbiol. 52, 1155–1160 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Rogers, P. L., Jeon, Y. J., Lee, K. J. & Lawford, H. G. Zymomonas mobilis for fuel ethanol and higher value products. Adv. Biochem. Eng. Biotechnol. 108, 263–288 (2007).

    CAS  PubMed  Google Scholar 

  29. Jeffries, T. W. et al. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nature Biotechnol. 25, 319–326 (2007).

    Article  CAS  Google Scholar 

  30. Zhang, Y. H. & Lynd, L. R. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc. Natl Acad. Sci. USA 102, 7321–7325 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tyurin, M. V., Sullivan, C. R. & Lynd, L. R. Role of spontaneous current oscillations during high-efficiency electrotransformation of thermophilic anaerobes. Appl. Environ. Microbiol. 71, 8069–8076 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Keating, J. D., Panganiban, C. & Mansfield, S. D. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93, 1196–1206 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Underwood, S. A., Buszko, M. L., Shanmugam, K. T. & Ingram, L. O. Lack of protective osmolytes limits final cell density and volumetric productivity of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl. Environ. Microbiol. 70, 2734–2740 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Den Haan, R., Rose, S. H., Lynd, L. R. & van Zyl, W. H. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 9, 87–94 (2007). This study imported key cellulytic enzymes to create a strain of yeast that is able to perform consolidated bioprocessing by converting amorphous cellulose into ethanol.

    Article  CAS  PubMed  Google Scholar 

  35. Jones, D. T. & Woods, D. R. Acetone-butanol fermentation revisited. Microbiol. Rev. 50, 484–524 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cornillot, E., Nair, R. V., Papoutsakis, E. T. & Soucaille, P. The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol. 179, 5442–5447 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tummala, S. B., Welker, N. E. & Papoutsakis, E. T. Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J. Bacteriol. 185, 1923–1934 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shao, L. et al. Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res. 17, 963–965 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Jojima, T., Inui, M. & Yukawa, H. Production of isopropanol by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77, 1219–1224 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Inui, M. et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77, 1305–1316 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Alper, H. & Stephanopoulos, G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab. Eng. 9, 258–267 (2007). This investigation took a novel, global approach to enhancing tolerance phenotypes that are crucial for improving biofuel-producing organisms.

    Article  CAS  PubMed  Google Scholar 

  42. Jensen, K., Alper, H., Fischer, C. & Stephanopoulos, G. Identifying functionally important mutations from phenotypically diverse sequence data. Appl. Environ. Microbiol. 72, 3696–3701 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tian, J. et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050–1054 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Guido, N. J. et al. A bottom-up approach to gene regulation. Nature 439, 856–860 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Tyo, K. E., Alper, H. S. & Stephanopoulos, G. N. Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol. 25, 132–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Alper, H., Fischer, C., Nevoigt, E. & Stephanopoulos, G. Tuning genetic control through promoter engineering. Proc. Natl Acad. Sci. USA 102, 12678–12683 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fung, E. et al. A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Kodumal, S. J. et al. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc. Natl Acad. Sci. USA 101, 15573–15578 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M. & Yukawa, H. Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process. Appl. Microbiol. Biotechnol. 74, 754–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, S. K., Chou, H., Ham, T. S., Lee, T. S. & Keasling, J. D. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19, 556–563 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Kolisnychenko, V. et al. Engineering a reduced Escherichia coli genome. Genome Res. 12, 640–647 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hutchison, C. A. et al. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165–2169 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Alper, H. & Stephanopoulos, G. Uncovering the gene knockout landscape for improved lycopene production in E. coli. Appl. Microbiol. Biotechnol. 78, 801–810 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Jeffries, T. W. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17, 320–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Jin, Y. S., Alper, H., Yang, Y. T. & Stephanopoulos, G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 71, 8249–8256 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jeffries, T. W. & Jin, Y. S. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63, 495–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Jin, Y. S., Jones, S., Shi, N. Q. & Jeffries, T. W. Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl. Environ. Microbiol. 68, 1232–1239 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuyper, M. et al. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5, 399–409 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Karimaki, J. et al. Engineering the substrate specificity of xylose isomerase. Protein Eng. Des. Sel. 17, 861–869 (2004).

    Article  PubMed  Google Scholar 

  61. Qin, Y., Wei, X., Song, X. & Qu, Y. Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J. Biotechnol. 135, 190–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Pitera, D. J., Paddon, C. J., Newman, J. D. & Keasling, J. D. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab. Eng. 9, 193–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Alper, H., Miyaoku, K. & Stephanopoulos, G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotech. 23, 612–616 (2005).

    Article  CAS  Google Scholar 

  64. van Zyl, W. H., Lynd, L. R., den Haan, R. & McBride, J. E. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108, 205–235 (2007).

    CAS  PubMed  Google Scholar 

  65. Lynd, L. R., Cushman, J. H., Nichols, R. J. & Wyman, C. E. Fuel ethanol from cellulosic biomass. Science 251, 1318–1323 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Lynd, L. R., van Zyl, W. H., McBride, J. E. & Laser, M. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16, 577–583 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Zhou, X. et al. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395, 29–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Szambelan, K., Nowak, J. & Czarnecki, Z. Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnol. Lett. 26, 845–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Patle, S. & Lal, B. Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. Biotechnol. Lett. 29, 1839–1843 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Eiteman, M. A., Lee, S. A. & Altman, E. A co-fermentation strategy to consume sugar mixtures effectively. J. Biol. Eng. 2, 3 (2008). This report provides evidence that a consortia of organisms may perform better than a single organism in co-fermentations of glucose and xylose.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leuchtenberger, W., Huthmacher, K. & Drauz, K. Biotechnological production of amino acids and derivatives: current status and prospects. Appl. Microbiol. Biotechnol. 69, 1–8 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Hamilton, S. R. et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313, 1441–1443 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Stephanopoulos, G. & Sinskey, A. J. Metabolic engineering — methodologies and future prospects. Trends Biotechnol. 11, 392–396 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Ostergaard, S., Olsson, L., Johnston, M. & Nielsen, J. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nature Biotech. 18, 1283–1286 (2000).

    Article  CAS  Google Scholar 

  75. Farmer, W. R. & Liao, J. C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nature Biotech. 18, 533–537 (2000).

    Article  CAS  Google Scholar 

  76. Becker, J. & Boles, E. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol. 69, 4144–4150 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Martinez, D. et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl Acad. Sci. USA 106, 1954–1959 (2009). This is the first systems biology analysis of a brown rot fungus that will be useful for gene harvesting and studying the function of native lignocellulosic conversion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Seo, J. S. et al. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nature Biotech. 23, 63–68 (2005).

    Article  CAS  Google Scholar 

  79. Shi, N. Q., Davis, B., Sherman, F., Cruz, J. & Jeffries, T. W. Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast 15, 1021–1030 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Lynd, L. R., Grethlein, H. E. & Wolkin, R. H. Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl. Environ. Microbiol. 55, 3131–3139 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Balusu, R., Paduru, R. M., Seenayya, G. & Reddy, G. Production of ethanol from cellulosic biomass by Clostridium thermocellum SS19 in submerged fermentation: screening of nutrients using Plackett-Burman design. Appl. Biochem. Biotechnol. 117, 133–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Hahn-Hagerdal, B., Karhumaa, K., Jeppsson, M. & Gorwa-Grauslund, M. F. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108, 147–177 (2007).

    PubMed  Google Scholar 

  83. Kuyper, M., Winkler, A. A., van Dijken, J. P. & Pronk, J. T. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res. 4, 655–664 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Ho, N. W., Chen, Z., Brainard, A. P. & Sedlak, M. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv. Biochem. Eng. Biotechnol. 65, 163–192 (1999).

    CAS  PubMed  Google Scholar 

  85. Yomano, L. P., York, S. W. & Ingram, L. O. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 20, 132–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Ingram, L. O. et al. Metabolic engineering of bacteria for ethanol production. Biotechnol. Bioeng. 58, 204–214 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Inui, M., Kawaguchi, H., Murakami, S., Vertes, A. A. & Yukawa, H. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J. Mol. Microbiol. Biotechnol. 8, 243–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Durre, P. Fermentative butanol production: bulk chemical and biofuel. Ann. NY Acad. Sci. 1125, 353–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Thormann, K., Feustel, L., Lorenz, K., Nakotte, S. & Durre, P. Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. J. Bacteriol. 184, 1966–1973 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Harris, L. M., Blank, L., Desai, R. P., Welker, N. E. & Papoutsakis, E. T. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J. Ind. Microbiol. Biotechnol. 27, 322–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Steen, E. et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. 7, 36 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Papanikolaou, S. & Aggelis, G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour. Technol. 82, 43–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Kalscheuer, R. et al. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl. Environ. Microbiol. 72, 1373–1379 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M. & Yukawa, H. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl. Environ. Microbiol. 71, 6762–6768 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ghirardi, M. L. Hydrogen production by photosynthetic green algae. Indian J. Biochem. Biophys. 43, 201–210 (2006).

    CAS  PubMed  Google Scholar 

  97. Hankamer, B. et al. Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up. Physiol. Plant 131, 10–21 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Park, M. O. New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. J. Bacteriol. 187, 1426–1429 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Park, M. O., Heguri, K., Hirata, K. & Miyamoto, K. Production of alternatives to fuel oil from organic waste by the alkane-producing bacterium, Vibrio furnissii M1. J. Appl. Microbiol. 98, 324–331 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Wackett, L. P., Frias, J. A., Seffernick, J. L., Sukovich, D. J. & Cameron, S. M. Genomic and biochemical studies demonstrating the absence of an alkane-producing phenotype in Vibrio furnissii M1. Appl. Environ. Microbiol. 73, 7192–7198 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Department of Energy (grant number: DE-FC36-07G017058), the National Science Foundation (grant number: CBET-0730238) and the Camille and Henry Dreyfus New Faculty Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Stephanopoulos.

Related links

Related links

DATABASES

Entrez Genome Project

Clostridium acetobutylicum

Clostridium phytofermentans

Clostridium thermocellum

Corynebacterium glutamicum

Escherichia coli

Saccharomyces cerevisiae

Zymomonas mobilis

FURTHER INFORMATION

Gregory Stephanopolous's homepage

Glossary

Biomass

Raw plant material or agricultural waste typically composed of polymers of sugars and lignin.

Gasification

The thermal conversion of biomass into carbon monoxide and hydrogen through high temperature processing.

Syn gas

The carbon monoxide and hydrogen gas formed during gasification. Also known as synthesis gas.

Aqueous-phase reforming

A low-temperature, liquid- phase catalytic process that is used to convert biomass sugars into hydrocarbons through the formation of hydrogen gas.

Biomass utilization

The process of converting biomass into fuels and chemicals, including any physical, chemical, enzymatic or cell-based application.

Synthetic biology

The use of DNA synthesis and recombinant DNA technologies to design and construct novel functions and genetic circuits de novo.

Consolidated bioprocessing

An approach whereby the four major steps of biomass utilization (enzyme production, biomass hydrolysis, hexose fermentation and pentose fermentation) take place in a single step.

Lignocellulose

Plant biomass that is composed of the sugar polymers (cellulose and hemicellulose) and lignin (which is often composed of hydrophobic and aromatic molecules).

Bioprospecting

Searching for and borrowing useful genes from other organisms to confer a specifcally confer a specifically desired phenotype technology.

Isoprenoid

A chemically diverse and flexible polymer of the 5-carbon isoprene group that is found naturally in all living organisms.

Xylose fermentation capacity

The ability of a cell to convert xylose (a highly abundant, but often difficult to ferment, five-carbon sugar found in hemicellulose) into a biofuel.

Lycopene

A carotenoid (specific type of isoprenoid) that is a 40-carbon molecule formed by the condensation of isoprene units.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alper, H., Stephanopoulos, G. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?. Nat Rev Microbiol 7, 715–723 (2009). https://doi.org/10.1038/nrmicro2186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing