Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phagocyte partnership during the onset and resolution of inflammation

Key Points

  • Neutrophils, monocytes and macrophages arise from common precursors, explaining much of their functional and phenotypical overlap. However, these cells also have complementary functions during the onset and resolution of inflammation.

  • After sensing alarming stimuli, tissue-resident macrophages and sentinel monocytes promote an inflammatory response through release of chemokines (such as CXC-chemokine ligand 1 (CXCL1), CXCL2 and CXCL8) and pro-inflammatory lipid mediators (such as leukotrienes).

  • Neutrophils are the 'advance guard' for inflammatory monocytes. Neutrophil-derived granule proteins (such as azurocidin and LL-37) and neutrophil protease-driven alterations of the local chemokine network promote rapid infiltration of monocytes to sites of inflammation.

  • Monocyte-derived macrophages and apoptotic neutrophils abrogate further neutrophil influx by secreting anti-inflammatory lipid-mediators (such as lipoxins) or inactivating chemokines.

  • Neutrophils undergoing apoptosis release signals that attract monocytes to the site of inflammation. Phagocytic clearance of apoptotic neutrophils reprogrammes monocyte-derived macrophages from a pro-inflammatory to an anti-inflammatory phenotype.

  • The interplay between phagocyte subsets during the onset and resolution of inflammation could be targeted for therapeutic purposes. Potential targets for intervention include neutrophil-derived granule proteins, neutrophil apoptosis, or chemokines and lipid-mediators released from different phagocyte subsets.

Abstract

Neutrophils, monocytes and macrophages are closely related phagocytic cells that cooperate during the onset, progression and resolution of inflammation. This Review highlights the mechanisms involved in the intimate partnership of phagocytes during each progressive phase of the inflammatory response. We describe how tissue-resident macrophages recognize tissue damage to promote the recruitment of neutrophils and the mechanisms by which infiltrating neutrophils can then promote monocyte recruitment. Furthermore, we discuss the phagocyte-derived signals that abrogate neutrophil recruitment and how the uptake of apoptotic neutrophils by macrophages leads to termination of the inflammatory response. Finally, we highlight the potential therapeutic relevance of these interactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phagocyte interactions in inflammation.
Figure 2: Resident macrophages promote neutrophil invasion.
Figure 3: Neutrophils promote classical inflammatory monocyte influx.
Figure 4: Phagocyte interplay during the resolution of inflammation.

Similar content being viewed by others

References

  1. Nathan, C. Neutrophils and immunity: challenges and opportunities. Nature Rev. Immunol. 6, 173–182 (2006).

    Article  CAS  Google Scholar 

  2. Ingersoll, M. A. et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115, e10–e19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ziegler-Heitbrock, L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J. Leukoc. Biol. 81, 584–592 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007). The first paper to show the potential importance of non-classical monocytes during the start of an inflammatory response in the mouse.

    Article  CAS  PubMed  Google Scholar 

  5. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao, C. et al. Identification of novel functional differences in monocyte subsets using proteomic and transcriptomic methods. J. Proteome Res. 8, 4028–4038 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Frankenberger, M., Sternsdorf, T., Pechumer, H., Pforte, A. & Ziegler-Heitbrock, H. W. Differential cytokine expression in human blood monocyte subpopulations: a polymerase chain reaction analysis. Blood 87, 373–377 (1996).

    CAS  PubMed  Google Scholar 

  8. Belge, K. U. et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J. Immunol. 168, 3536–3542 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. An, G. et al. P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation 117, 3227–3237 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soehnlein, O. & Weber, C. Myeloid cells in atherosclerosis: initiators and decision shapers. Semin. Immunopathol. 31, 35–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003). This paper proves the existence of two mouse monocyte subsets with phenotypical and functional differences.

    Article  CAS  PubMed  Google Scholar 

  13. Yona, S. & Jung, S. Monocytes: subsets, origins, fates and functions. Curr. Opin. Hematol. 17, 53–59 (2010).

    Article  PubMed  Google Scholar 

  14. Kaufmann, S. H. Immunology's foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nature Immunol. 9, 705–712 (2008).

    Article  CAS  Google Scholar 

  15. Dale, D. C., Boxer, L. & Liles, W. C. The phagocytes: neutrophils and monocytes. Blood 112, 935–945 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Kantari, C., Pederzoli-Ribeil, M. & Witko-Sarsat, V. The role of neutrophils and monocytes in innate immunity. Contrib. Microbiol. 15, 118–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Ma, Q., Jones, D. & Springer, T. A. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10, 463–471 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Suratt, B. T. et al. Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 104, 565–571 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Serbina, N. V. & Pamer, E. G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nature Immunol. 7, 311–317 (2006).

    Article  CAS  Google Scholar 

  21. Martin, C. et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19, 583–593 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nathan, C. & Shiloh, M. U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl Acad. Sci. USA 97, 8841–8848 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kono, H. & Rock, K. L. How dying cells alert the immune system to danger. Nature Rev. Immunol. 8, 279–289 (2008).

    Article  CAS  Google Scholar 

  25. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Passlick, B., Flieger, D. & Ziegler-Heitbrock, H. W. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74, 2527–2534 (1989).

    CAS  PubMed  Google Scholar 

  27. Auffray, C., Sieweke, M. H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Soehnlein, O., Lindbom, L. & Weber, C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood 114, 4613–4623 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Yamasaki, S., Ishikawa, E., Sakuma, M., Hara, H., Ogata, K. & Saito, T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nature Immunol. 9, 1179–1188 (2008). This paper describes a new mechanism linking cell necrosis to inflammation, whereby necrotic cell-derived SAP130 ligates CLEC4E on myeloid cell resulting in transcription of pro-inflammatory signals.

    Article  CAS  Google Scholar 

  30. Hara, H. et al. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nature Immunol. 8, 619–629 (2007).

    Article  CAS  Google Scholar 

  31. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Bianchi, M. E. HMGB1 loves company. J. Leukoc. Biol. 86, 573–576 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunol. 8, 487–496 (2007).

    Article  CAS  Google Scholar 

  34. Yanai, H. et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462, 99–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, G. Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323, 1722–1725 (2009). This study elucidates a new mechanism by which the immune system discriminates between infection and tissue injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, Y., Chen, G. Y. & Zheng, P. CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol. 30, 557–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. García-Ramallo, E. et al. Resident cell chemokine expression serves as the major mechanism for leukocyte recruitment during local inflammation. J. Immunol. 169, 6467–6473 (2002).

    Article  PubMed  Google Scholar 

  38. Beck-Schimmer, B. et al. Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury. Respir. Res. 6, 61 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cailhier, J. F. et al. Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J. Immunol. 174, 2336–2342 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Cailhier, J. F. et al. Resident pleural macrophages are key orchestrators of neutrophil recruitment in pleural inflammation. Am. J. Respir. Crit. Care. Med. 173, 540–547 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Ajuebor, M. N. et al. Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. J. Immunol. 162, 1685–1691 (1999).

    CAS  PubMed  Google Scholar 

  42. Yamamoto, S. et al. TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nature Med. 14, 738–747 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Van den Steen, P. E., Proost, P., Wuyts, A., Van Damme, J. & Opdenakker, G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact. Blood 96, 2673–2681 (2000).

    CAS  PubMed  Google Scholar 

  44. Tester, A. M. et al. LPS responsiveness and neutrophil chemotaxis in vivo require PMN MMP-8 activity. PLoS ONE 2, e312 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Dahlén, S. E. et al. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc. Natl Acad. Sci. USA 78, 3887–3891 (1981).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schoenberger, S. P. BLT for speed. Nature Immunol. 4, 937–939 (2003).

    Article  CAS  Google Scholar 

  48. Tager, A. M. & Luster, A. D. BLT1 and BLT2: the leukotriene B4 receptors. Prostaglandins Leukot. Essent. Fatty Acids. 69, 123–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Borregaard, N. & Cowland, J. B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89, 3503–3521 (1997).

    CAS  PubMed  Google Scholar 

  50. Faurschou, M. & Borregaard, N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 5, 1317–1327 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Gautam, N., Herwald, H., Hedqvist, P. & Lindbom, L. Signaling via β2 integrins triggers neutrophil-dependent alteration in endothelial barrier function. J. Exp. Med. 191, 1829–1839 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gautam, N. et al. Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular permeability. Nature Med. 7, 1123–1127 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Herwald, H. et al. M protein, a classical bacterial virulence determinant, forms complexes with fibrinogen that induce vascular leakage. Cell 116, 367–379 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Soehnlein, O. et al. Neutrophil degranulation mediates severe lung damage triggered by streptococcal M1 protein. Eur. Respir. J. 32, 405–412 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Soehnlein, O. et al. Neutrophil-derived heparin-binding protein (HBP/CAP37) deposited on endothelium enhances monocyte arrest under flow conditions. J. Immunol. 174, 6399–6405 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Soehnlein, O. & Lindbom, L. Neutrophil-derived azurocidin alarms the immune system. J. Leukoc. Biol. 85, 344–351 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, T. D., Gonzalez, M. L., Kumar, P., Grammas, P. & Pereira, H. A. CAP37, a neutrophil-derived inflammatory mediator, augments leukocyte adhesion to endothelial monolayers. Microvasc. Res. 66, 38–48 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Lacy, P. & Eitzen, G. Control of granule exocytosis in neutrophils. Front. Biosci. 13, 5559–5570 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Gombart, A. F. & Koeffler, H. P. Neutrophil specific granule deficiency and mutations in the gene encoding transcription factor C/EBPɛ. Curr. Opin. Hematol. 9, 36–42 (2002).

    Article  PubMed  Google Scholar 

  60. De Yang. et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192, 1069–1074 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, D., de la Rosa, G., Tewary, P. & Oppenheim, J. J. Alarmins link neutrophils and dendritic cells. Trends Immunol. 30, 531–537 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chertov, O. et al. Identification of human neutrophil-derived cathepsin G. and azurocidin/CAP37 as chemoattractants for mononuclear cells and neutrophils. J. Exp. Med. 186, 739–747 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ye, R. D. et al. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol. Rev. 61, 119–161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun, R. et al. Identification of neutrophil granule protein cathepsin G. as a novel chemotactic agonist for the G. protein-coupled formyl peptide receptor. J. Immunol. 173, 428–436 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Soehnlein, O. et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood 112, 1461–1471 (2008). This work highlights the importance of neutrophil-derived LL-37 and azurocidin in extravasation of classical, inflammatory monocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Soehnlein, O., Weber, C. & Lindbom, L. Neutrophil granule proteins tune monocytic cell function. Trends Immunol. 30, 538–546 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  Google Scholar 

  68. Romano, M. et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6, 315–325 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Taga, T. et al. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 58, 573–581 (1989).

    Article  CAS  PubMed  Google Scholar 

  70. Hurst, S. M. et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 14, 705–714 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Chalaris, A. et al. Apoptosis is a natural stimulus of IL6R shedding and contributes to the proinflammatory trans-signaling function of neutrophils. Blood 110, 1748–1755 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Taekema-Roelvink, M. E. et al. Proteinase 3 enhances endothelial monocyte chemoattractant protein-1 production and induces increased adhesion of neutrophils to endothelial cells by upregulating intercellular cell adhesion molecule-1. J. Am. Soc. Nephrol. 12, 932–940 (2001).

    CAS  PubMed  Google Scholar 

  73. Påhlman, L. I. et al. Streptococcal M protein: a multipotent and powerful inducer of inflammation. J. Immunol. 177, 1221–1228 (2006).

    Article  PubMed  Google Scholar 

  74. Berahovich, R. D. et al. Proteolytic activation of alternative CCR1 ligands in inflammation. J. Immunol. 174, 7341–7351 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Borregaard, N., Sørensen, O. E. & Theilgaard-Mönch, K. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 28, 340–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Gerszten, R. E. et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398, 718–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Kasama, T., Strieter, R. M., Standiford, T. J., Burdick, M. D. & Kunkel, S. L. Expression and regulation of human neutrophil-derived macrophage inflammatory protein 1α. J. Exp. Med. 178, 63–72 (1993).

    Article  CAS  PubMed  Google Scholar 

  78. Pelletier, M. et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 115, 335–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Scapini, P. et al. Neutrophils produce biologically active macrophage inflammatory protein-3α (MIP-3α)/CCL20 and MIP-3β/CCL19. Eur. J. Immunol. 31, 1981–1988 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Le Borgne, M. et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24, 191–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Wittamer, V. et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198, 977–985 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zabel, B. A. et al. Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 280, 34661–34666 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Soehnlein, O. et al. Neutrophil primary granule proteins HBP and HNP1–3 boost bacterial phagocytosis by human and murine macrophages. J. Clin. Invest. 118, 3491–3502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Soehnlein, O. Direct and alternative antimicrobial mechanisms of neutrophil-derived granule proteins. J. Mol. Med. 87, 1157–1164 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Silva, M. T. When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J. Leukoc. Biol. 87, 93–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Serhan, C. N., Chiang, N. & Van Dyke, T. E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nature Rev. Immunol. 8, 349–361 (2008).

    Article  CAS  Google Scholar 

  87. Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nature Immunol. 2, 612–619 (2001). The first study showing the presence of predominantly pro-inflammatory lipid mediators such as leukotriene B 4 and PGE 2 in inflammatory exudates at early stages, and anti-inflammatory lipid mediators such as lipoxin A4 dominates at later stages.

    Article  CAS  Google Scholar 

  88. Freire-de-Lima, C. G. et al. Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J. Biol. Chem. 281, 38376–38384 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Maddox, J. F. et al. Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G.-protein-linked lipoxin A4 receptor. J. Biol. Chem. 272, 6972–6978 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Chiang, N. et al. The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol. Rev. 58, 463–487 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. József, L., Zouki, C., Petasis, N. A., Serhan, C. N. & Filep, J. G. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit peroxynitrite formation, NF-κB and AP-1 activation, and IL-8 gene expression in human leukocytes. Proc. Natl Acad. Sci. USA 99, 13266–13271 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Serhan, C. N. et al. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 192, 1197–1204 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Arita, M. et al. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178, 3912–3917 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Arita, M. et al. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 201, 713–722 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Serhan, C. N. et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J. Exp. Med. 206, 15–23 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Perretti, M. & D'Acquisto, F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nature Rev. Immunol. 9, 62–70 (2009).

    Article  CAS  Google Scholar 

  97. Perretti, M. et al. Mobilizing lipocortin 1 in adherent human leukocytes downregulates their transmigration. Nature Med. 2, 1259–1262 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Scannell, M. et al. Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. J. Immunol. 178, 4595–4605 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Cash, J. L. et al. Synthetic chemerin-derived peptides suppress inflammation through ChemR23. J. Exp. Med. 205, 767–775 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cash, J. L., Christian, A. R. & Greaves, D. R. Chemerin peptides promote phagocytosis in a ChemR23- and Syk-dependent manner. J. Immunol. 184, 5315–5324 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Ariel, A. et al. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nature Immunol. 7, 1209–1216 (2006).

    Article  CAS  Google Scholar 

  102. Dean, R. A. et al. Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood 112, 3455–3464 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. McQuibban, G. A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. McQuibban, G. A. et al. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100, 1160–1167 (2002).

    CAS  PubMed  Google Scholar 

  105. van den Berg, J. M., Weyer, S., Weening, J. J., Roos, D. & Kuijpers, T. W. Divergent effects of tumor necrosis factor α on apoptosis of human neutrophils. J. Leukoc. Biol. 69, 467–473 (2001).

    CAS  PubMed  Google Scholar 

  106. Allenbach, C. et al. Macrophages induce neutrophil apoptosis through membrane TNF, a process amplified by Leishmania major. J. Immunol. 176, 6656–6664 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Meszaros, A. J., Reichner, J. S. & Albina, J. E. Macrophage-induced neutrophil apoptosis. J. Immunol. 165, 435–441 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Bournazou, I. et al. Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J. Clin. Invest. 119, 20–32 (2009). This report identifies lactoferrin from apoptotic cells as an important mediator for blocking the further influx of neutrophils.

    CAS  PubMed  Google Scholar 

  109. de la Rosa, G., Yang, D., Tewary, P., Varadhachary, A. & Oppenheim, J. J. Lactoferrin acts as an alarmin to promote the recruitment and activation of APCs and antigen-specific immune responses. J. Immunol. 180, 6868–6876 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Papayannopoulos, V. & Zychlinsky, A. NETs: a new strategy for using old weapons. Trends Immunol. 30, 513–521 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Stark, M. A. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Ley, K., Smith, E. & Stark, M. A. IL-17A-producing neutrophil-regulatory Tn lymphocytes. Immunol. Res. 34, 229–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Lauber, K. et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717–730 (2003). In this study, the authors identify lysophosphatidylcholine released from apoptotic cells as an important 'find me' signal.

    Article  CAS  PubMed  Google Scholar 

  115. Kim, S. J., Gershov, D., Ma, X., Brot, N. & Elkon, K. B. I-PLA2 activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J. Exp. Med. 196, 655–665 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Peter, C. et al. Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A. J. Biol. Chem. 283, 5296–5305 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009). This report highlights the importance of the nucleotides ATP and UTP secreted from apoptotic cells in recruiting monocytes and macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Truman, L. A. et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112, 5026–5036 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442, 457–460 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Voll, R. E. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bellingan, G. J., Caldwell, H., Howie, S. E., Dransfield, I. & Haslett, C. In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. J. Immunol. 157, 2577–2585 (1996). References 121 and 122 are classical studies on the clearance of apoptotic neutrophils by macrophages, subsequent macrophage reprogramming and emigration to the draining lymph nodes.

    CAS  PubMed  Google Scholar 

  123. Grimsley, C. & Ravichandran, K. S. Cues for apoptotic cell engulfment: eat-me, don't eat-me and come-get-me signals. Trends Cell. Biol. 13, 648–656 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Li, M. O., Sarkisian, M. R., Mehal, W. Z., Rakic, P. & Flavell, R. A. Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302, 1560–1563 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Greenberg, M. E. et al. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med. 203, 2613–2625 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Mevorach, D., Mascarenhas, J. O., Gershov, D. & Elkon, K. B. Complement-dependent clearance of apoptotic cells by human macrophages. J. Exp. Med. 188, 2313–2320 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kennedy, A. D. & DeLeo, F. R. Neutrophil apoptosis and the resolution of infection. Immunol. Res. 43, 25–61 (2009).

    Article  PubMed  Google Scholar 

  129. Freire-de-Lima, C. G. et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 403, 199–203 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Medeiros, A. I., Serezani, C. H., Lee, S. P. & Peters-Golden, M. Efferocytosis impairs pulmonary macrophage and lung antibacterial function via PGE2/EP2 signaling. J. Exp. Med. 206, 61–68 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Scott, M. G. et al. An anti-infective peptide that selectively modulates the innate immune response. Nature Biotechnol. 25, 465–472 (2007).

    Article  CAS  Google Scholar 

  132. Koenen, R. R. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature Med. 15, 97–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Koenen, R. R. & Weber, C. Therapeutic targeting of chemokine interactions in atherosclerosis. Nature Rev. Drug Discov. 9, 141–153 (2010).

    Article  CAS  Google Scholar 

  134. Rossi, A. G. et al. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nature Med. 12, 1056–1064 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Schwab, J. M., Chiang, N., Arita, M. & Serhan, C. N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447, 869–874 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Spite, M. et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461, 1287–1291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nature Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by the Deutsche Forschungsgemeinschaft (SO876/3-1, SO876/4-1 and FOR809), the German Heart Foundation and German Foundation of Heart Research, the START programme within the Faculty of Medicine at the RWTH Aachen University, the Swedish Research Council, the Swedish Heart-Lung Foundation, Swedish Foundation for Strategic Research and Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Soehnlein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Secretagogue

A substance that causes another substance to be secreted.

Pertussis toxin

Pertussis toxin blocks Gαi-coupled receptor signalling (including chemokine-receptor signalling) by catalysing ADP ribosylation of the Gαi subunit.

ELR motif

A conserved glutamatic acid–leucine–arginine (ELR) sequence found in CXC-chemokines immediately preceding the first cysteine residue near the amino-terminal end. The motif is crucial for receptor ligation and the chemotactic activity of neutrophils.

'Find me' signal

A signal emitted by dying cells to promote the recruitment of scavenger cells that clear the apoptotic cell body.

'Eat me' signal

A signal emitted by dying cells to facilitate their recognition and phagocytosis.

Electrotaxis

Movement of an organism or a cell in response to stimulation by electric charges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soehnlein, O., Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10, 427–439 (2010). https://doi.org/10.1038/nri2779

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2779

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing