Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A molecular trio in relapse and remission in multiple sclerosis

Key Points

  • Three molecules have a key role in the remissions and relapses seen in around two thirds of patients with multiple sclerosis — α4β1 integrin, osteopontin and αB crystallin.

  • The key integrin in lymphocyte homing to the brain in multiple sclerosis is α4β1 integrin. Blockade of this integrin with a humanized monoclonal antibody, natalizumab, reduces the relapse rate by two thirds. It is the most potent approved drug for the treatment of multiple sclerosis.

  • Osteopontin is a binding partner of α4β1 integrin. It is a pro-survival molecule and inhibits apoptosis through its actions on the transcription factors forkhead box O3A (FOXO3A) and nuclear factor-κB (NF-κB).

  • Administration of osteopontin into mice with experimental autoimmune encephalomyelitis (EAE) triggers relapse of the disease. The relapses are a result of the inhibition of apoptosis and the increased production of T helper 1 (TH1)- and TH17-type cytokines from autoreactive T cells.

  • Remission in multiple sclerosis is driven by a small heat shock protein, αB crystallin. αB crystallin decreases the production of TH1- and TH17-type cytokines from autoreactive T cells.

  • Infusion of αB crystallin in animal models of multiple sclerosis resolves progressive disease and terminates relapse.

  • αB crystallin is produced in copious amounts at the sites of inflammation in the brains of patients with multiple sclerosis.

Abstract

Two thirds of patients with multiple sclerosis have the relapsing-remitting form, which often progresses to more debilitating disease. Striking clinical recovery, termed remission, often follows these periodic neurological defects, termed relapses. Recent work has revealed the role of three key molecules in relapse and remission: α4β1 integrin (also known as VLA4) is an adhesion molecule that mediates T cell migration from the blood into the brain; osteopontin binds to α4β1 integrin, stimulating the production of pro-inflammatory cytokines and inhibiting apoptosis; and αB crystallin inhibits inflammation in the brain. This Review discusses how this molecular trio interacts to initiate relapses (in the case of osteopontin and α4β1 integrin) and then to terminate them as remissions in multiple sclerosis (in the case of αB crystallin).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenesis of multiple sclerosis.
Figure 2: Induction of relapses by osteopontin.
Figure 3: Mechanism of remission induced by αB crystallin.

Similar content being viewed by others

References

  1. Steinman L. Multiple sclerosis: a two stage disease. Nature Immunol. 2, 762–765 (2001).

    Article  CAS  Google Scholar 

  2. Steinman, L., Martin, R., Bernard, C., Conlon, P. & Oksenberg, J. R. Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu. Rev. Neurosci. 25, 491–505 (2002).

    Article  CAS  Google Scholar 

  3. Chabas, D. et al. The influence of the pro-inflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294, 1731–1735 (2001).

    Article  CAS  Google Scholar 

  4. Ashkar, S. et al. Eta-1 (osteopontin): an early component of type 1 (cell-mediated) immunity. Science 287, 860–864 (2000).

    Article  CAS  Google Scholar 

  5. Yednock, T. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356, 63–66 (1992). This paper describes the history of the development of natalizumab for the treatment of relapsing-remitting multiple sclerosis.

    Article  CAS  Google Scholar 

  6. Brocke, S., Piercy, C., Steinman, L., Weissman, I. L. & Veromaa, T. Antibodies to CD44 and integrin α4, but not L-selectin, prevent CNS inflammation and experimental encephalomyelitis by blocking secondary leukocyte recruitment. Proc. Natl Acad. Sci USA 96, 6896–6901 (1999).

    Article  CAS  Google Scholar 

  7. Steinman, L. Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nature Rev. Drug Discov. 4, 510–519 (2005).

    Article  CAS  Google Scholar 

  8. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    Article  CAS  Google Scholar 

  9. Rudick, R. A. et al. Natalizumab plus interferon β-1a for relapsing multiple sclerosis. N. Engl. J. Med. 354, 911–923 (2006).

    Article  CAS  Google Scholar 

  10. Hur, E. et al. Osteopontin induced relapse and progression of autoimmune brain disease via enhanced survival of activated T cells. Nature Immunol. 8, 77–86 (2007). This paper describes the pro-survival properties of osteopontin and the underlying mechanisms in inducing neurological relapses.

    Article  Google Scholar 

  11. Stromnes, I. M. & Goverman, J. M. Osteopontin-induced survival of T cells. Nature Immunol. 8, 19–20 (2007).

    Article  CAS  Google Scholar 

  12. Vogt, M. H., Lopatinskaya, L., Smits, M., Polman, C. H., Nagelkerken, L. Elevated osteopontin levels in active relapsing-remitting multiple sclerosis. Ann. Neurol. 53, 819–822 (2003).

    Article  CAS  Google Scholar 

  13. Comabella, M. et al. Plasma osteopontin levels in multiple sclerosis. J. Neuroimmunol. 158, 231–239 (2005).

    Article  CAS  Google Scholar 

  14. Ousman, S. S. et al. Protective and therapeutic role for αB-crystallin in autoimmune demyelination. Nature 448, 474–479 (2007). This paper describes the guardian properties of αB crystallin in autoimmune demyelination.

    Article  CAS  Google Scholar 

  15. Han, M. H. et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451, 1076–1081 (2008).

    Article  CAS  Google Scholar 

  16. Cannella, B. & Raine, C. S. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann. Neurol. 37, 424–435 (1995).

    Article  CAS  Google Scholar 

  17. Fisher, L. W., Torchia, D. A., Fohr, B., Young, M. F. & Fedarko, N. S. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem. Biophys. Res. Commun. 280, 460–465 (2001). This paper describes the properties of the Sibling family of proteins.

    Article  CAS  Google Scholar 

  18. Jansson, M., Panoutsakopoulou, V., Baker, J., Klein, L. & Cantor, H. Attenuated experimental autoimmune encephalomyelitis in Eta-1/osteopontin-deficient mice. J. Immunol. 168, 2096–2099 (2002).

    Article  CAS  Google Scholar 

  19. Shinohara, M. L., Kim, J.-H., Garcia, V. A. & Cantor, H. Engagement of the type-I interferon receptor on dendritic cells inhibits promotion of Th17 cells: role of intracellular osteopontin. Immunity 29, 68–78 (2008).

    Article  CAS  Google Scholar 

  20. Murugaiyan, G., Mittal, A. & Weiner, H. L. Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4+ T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. J. Immunol. 181, 7480–7488 (2008).

    Article  CAS  Google Scholar 

  21. Oldberg, A., Franzén, A. & Heinegård, D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg–Gly–Asp cell-binding sequence. Proc. Natl Acad. Sci. USA 83, 8819–8823 (1986).

    Article  CAS  Google Scholar 

  22. Lederberg, J. H1N1-influenza as Lazarus: genomic resurrection from the tomb of an unknown. Proc. Natl Acad. Sci. USA 98, 2115–2116 (2001).

    Article  CAS  Google Scholar 

  23. Senger, D. R., Wirth, D. F. & Hynes, R. O. Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell 16, 885–893 (1979).

    Article  CAS  Google Scholar 

  24. Singh, R. P., Patarca, R., Schwartz, J., Singh, P., & Cantor, H. Definition of a specific interaction between the early T lymphocyte activation 1 (Eta-1) protein and murine macrophages in vitro and its effect upon macrophages in vivo. J. Exp. Med. 171, 1931–1942 (1990).

    Article  CAS  Google Scholar 

  25. Smith, J. H. & Denhardt, D. T. Molecular cloning of a tumor promoter-inducible mRNA found in JB6 mouse epidermal cells: induction is stable at high, but not at low, cell densities. J. Cell Biochem. 34, 13–22 (1987).

    Article  CAS  Google Scholar 

  26. Sinclair, C., Mirakhur, M., Kirk, J., Farrell, M. & McQuaid, S. Up-regulation of osteopontin and aB-crystallin in the normal-appearing white matter of multiple sclerosis: an immunohistochemical study utilizing tissue microarrays. Neuropathol. Appl. Neurobiol. 31, 292–303 (2005).

    Article  CAS  Google Scholar 

  27. Diaz-Sanchez, M., Williams, K., DeLuca, G. C. & Esiri, M. M. Protein co-expression with axonal injury in multiple sclerosis plaques. Acta Neuropathol. 111, 289–299 (2006).

    Article  CAS  Google Scholar 

  28. Caillier, S. et al.. Osteopontin polymorphisms and disease course in MS. Genes Immun. 4, 312–315 (2003).

    Article  CAS  Google Scholar 

  29. Miller, D. H. et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 348, 15–23 (2003).

    Article  CAS  Google Scholar 

  30. Bettelli, E., Oukka, M. & Kuchroo, V. K. TH-17 cells in the circle of immunity and autoimmunity. Nature Immunol. 8, 345–350 (2007).

    Article  CAS  Google Scholar 

  31. Steinman, L. A rush to judgment on Th17. J. Exp. Med. 205, 1517–1522 (2008).

    Article  CAS  Google Scholar 

  32. Pepinsky, R. B. et al. Comparative assessment of the ligand and metal ion binding properties of integrins α9β1 and α4β1. Biochemistry 41, 7125–7141 (2002).

    Article  CAS  Google Scholar 

  33. Davis, G., Bayless, K., Davis, M. J. & Meininger, G. A. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am. J. Pathol. 156, 1489–1498 (2000).

    Article  CAS  Google Scholar 

  34. Leung, L. L., Nishimura, T. & Myles, T. Regulation of tissue inflammation by thrombin-activatable carboxypeptidase B or (TAFI). Adv. Exp. Med. Biol. 632, 61–69 (2008).

    CAS  PubMed  Google Scholar 

  35. de Jong, W. W., Caspers, G. J. & Leunissen, J. A. Genealogy of the α-crystallin — small heat-shock protein superfamily. Int. J. Biol. Macromol. 22, 151–162 (1998).

    Article  CAS  Google Scholar 

  36. Kappe, G., Leunissen, J. A. & de Jong, W. W. Evolution and diversity of prokaryotic small heat shock proteins. Prog. Mol. Subcell. Biol. 28, 1–17 (2002).

    Article  CAS  Google Scholar 

  37. Kim, K. K., Kim, R. & Kim, S. H. Crystal structure of a small heat-shock protein. Nature 394, 595–599 (1998).

    Article  CAS  Google Scholar 

  38. van Noort, J. M. et al. The small heat-shock protein αB-crystallin as candidate autoantigen in multiple sclerosis. Nature 375, 798–801 (1995).

    Article  CAS  Google Scholar 

  39. Ransohoff, R. M. Inflammatory disease: assault on the guardian. Nature 448, 421–422 (2007).

    Article  CAS  Google Scholar 

  40. Van Veen, T. et al. αB crystallin genotype has impact on the multiple sclerosis phenotype. Neurology 61, 1245–1249 (2003).

    Article  CAS  Google Scholar 

  41. Stoevring, B., Fredericksen, J. L. & Christiansen, M. Cryab promoter polymorphisms: influence on multiple sclerosis susceptibility and clinical presentation. Clin. Chim. Acta. 375, 57–62 (2007).

    Article  CAS  Google Scholar 

  42. Bellachene, A. et al. Small integrin-binding ligand N-linked glycoprotein's (SIBLINGs): multifunctional proteins in cancer. Nature Rev. Cancer 8, 212–226 (2008).

    Article  Google Scholar 

  43. Chelouche-Lev, D., Kluger, H. M., Berger, A. J., Rimm, D. L. & Price, J. E. αB crystallin as a marker of lymph node involvement in breast carcinoma. Cancer 100, 2543–2548 (2004).

    Article  CAS  Google Scholar 

  44. Sato, T. et al. Osteopontin/Eta-1 upregulated in Crohn's disease regulates the Th1 immune response. Gut 54, 1254–1262 (2005).

    Article  CAS  Google Scholar 

  45. Wong, C. K., Lit, L. C., Tam, L. S., Li, E. K. & Lam, C. W. Elevation of plasma osteopontin concentration is correlated with disease activity in patients with systemic lupus erythematosus. Rheumatology (Oxford) 44, 602–606 (2005).

    Article  CAS  Google Scholar 

  46. De Groot, C. J. et al. Expression of TGF-β1, -β2, and -β3 isoforms and TGF-β type I and type II receptors in multiple sclerosis lesions and adult astrocyte cultures. J. Neuropathol. Exp. Neurol. 58, 174–187 (1999).

    Article  CAS  Google Scholar 

  47. Luo, J. et al. Glia-dependent TFG-β signaling, independent of TH17 pathway is critical for initiation of autoimmune encephalomyelitis. J. Clin. Invest. 117, 3306–3315 (2007).

    Article  CAS  Google Scholar 

  48. Steinman, L. Nuanced roles of cytokines in three major human brain disorders. J. Clin. Invest. 118, 3557–2563 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

L. Steinman acknowledges the fruitful collaboration with D.T. Denhardt over the past decade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Steinman.

Ethics declarations

Competing interests

L. Steinman has patent applications and issued patents on therapeutic uses of osteopontin and αB crystallin. He consults for Bayhill Therapeutics and Cardinal, which own interests in these patents. L. Steinman founded both companies and serves on their board of directors.

Related links

Related links

FURTHER INFORMATION

The Steinman laboratory homepage

Glossary

Gadolinium-enhanced lesion

A lesion that is visualized with magnetic resonance imaging and that is enhanced with the element gadolinium, which has a magnetic spin. These lesions correlate with areas of inflammation in the brains of patients with multiple sclerosis.

Perivascular cuff

An area surrounding an inflamed blood vessel, containing inflammatory lymphocytes, and delimited by endothelium on one side and basement membrane on the other side.

Myelin oligodendrocyte glycoprotein

One of the myelin proteins and a member of the immunoglobulin superfamily.

TH1 cell

An inflammatory cell, the signature cytokine of which is interferon-γ.

TH17 cell

An inflammatory cell, the signature cytokine of which is interleukin-17.

Reactive astrocyte

A type of glial cell within the brain that has many properties of macrophages.

Microglial cell

A type of macrophage-like glial cell that is derived from bone marrow and resides in the central nervous system.

Coagulation cascade

A biochemical sequence of reactions that regulates coagulation by a series of proteases acting on substrates such as fibrinogen and fibrin.

Laser capture microdissection

A technique in which tissues are dissected with a laser and then subjected to biochemical analysis. The pathological stage of the specimen can be correlated with biochemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinman, L. A molecular trio in relapse and remission in multiple sclerosis. Nat Rev Immunol 9, 440–447 (2009). https://doi.org/10.1038/nri2548

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing