Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolutionary origin of orphan genes

Key Points

  • Current models of gene evolution have concentrated on mechanisms that are mediated by duplication and by transposable elements, but these models have not yet fully evaluated the possibility of de novo evolution.

  • Orphan genes with no homology to genes in other evolutionary lineages occur in all genomes and are candidates for the de novo evolution of genes.

  • Several examples of de novo evolved genes have now been found, and the emergence process can involve a phase in which a gene functions as a non-coding RNA.

  • Orphan gene emergence rates are elevated during adaptive radiations.

  • Orphan gene emergence over time appears to be continuously high, but most of these newly emerged genes are likely to be subsequently lost.

  • It is still an open question whether newly evolved genes can form new stable protein domains or whether they act as intrinsically unstructured proteins.

  • The emergence of new genes may contribute to evolutionary novelties to the same degree as does the emergence of new regulatory interactions.

Abstract

Gene evolution has long been thought to be primarily driven by duplication and rearrangement mechanisms. However, every evolutionary lineage harbours orphan genes that lack homologues in other lineages and whose evolutionary origin is only poorly understood. Orphan genes might arise from duplication and rearrangement processes followed by fast divergence; however, de novo evolution out of non-coding genomic regions is emerging as an important additional mechanism. This process appears to provide raw material continuously for the evolution of new gene functions, which can become relevant for lineage-specific adaptations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of orphan genes in a phylogenetic context.
Figure 2: Duplication–divergence model for orphan gene evolution.
Figure 3: De novo evolution model for orphan genes.
Figure 4: Emergence rates of founder genes in three different phyla.

Similar content being viewed by others

References

  1. Ohno, S. Evolution by Gene Duplication (Springer, New York, 1970).

    Book  Google Scholar 

  2. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. King, M.-C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, J. Evolution by gene duplication: an update. Trends Ecol. Evol. 18, 292–298 (2003).

    Article  Google Scholar 

  5. Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Demuth, J. P. & Hahn, M. W. The life and death of gene families. Bioessays 31, 29–39 (2009).

    Article  PubMed  Google Scholar 

  7. Kaessmann, H. Origins, evolution, and phenotypic impact of new genes. Genome Res. 20, 1313–1326 (2010). This is a comprehensive review of all mechanisms of formation of new genes, in particular duplication and rearrangement processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bornberg-Bauer, E., Huylmans, A.-K. & Sikosek, T. How do new proteins arise? Curr. Opin. Struct. Biol. 20, 390–396 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Long, M., Betran, E., Thornton, K. & Wang, W. The origin of new genes: glimpses from the young and old. Nature Rev. Genet. 4, 865–875 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, Q. & Wang, W. On the origin and evolution of new genes — a genomic and experimental perspective. J. Genet. Genomics 35, 639–648 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Dujon, B. The yeast genome project: what did we learn? Trends Genet. 12, 263–270 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Casari, G., De Daruvar, A., Sander, C. & Schneider, R. Bioinformatics and the discovery of gene function. Trends Genet. 12, 244–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Fischer, D. & Eisenberg, D. Finding families for genomic ORFans. Bioinformatics 15, 759–762 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Khalturin, K., Hemmrich, G., Fraune, S., Augustin, R. & Bosch, T. C. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet. 25, 404–413 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Yin, Y. & Fischer, D. Identification and investigation of ORFans in the viral world. BMC Genomics 9, 24 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Albà, M. M. & Castresana, J. Inverse relationship between evolutionary rate and age of mammalian genes. Mol. Biol. Evol. 22, 598–606 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. Elhaik, E., Sabath, N. & Graur, D. The “inverse relationship between evolutionary rate and age of mammalian genes” is an artifact of increased genetic distance with rate of evolution and time of divergence. Mol. Biol. Evol. 23, 1–3 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Albà, M. M. & Castresana, J. On homology searches by protein BLAST and the characterization of the age of genes. BMC Evol. Biol. 7, 53 (2007). This is a crucial paper for understanding the power of BLAST for retrieving homologues and the probability of assigning orphan status to genes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wolf, Y. I., Novichkov, P. S., Karev, G. P., Koonin, E. V. & Lipman, D. J. The universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages. Proc. Natl Acad. Sci. USA 106, 7273–7280 (2009). This paper shows a universal log-normal distribution of evolutionary rates of proteins and develops a steady-state model of gene gain and gene loss during genome evolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cai, J. J. & Petrov, D. A. Relaxed purifying selection and possibly high rate of adaptation in primate lineage-specific genes. Genome Biol. Evol. 12, 393–409 (2010). This study makes extensive use of comparative genomic data and polymorphism data from human populations to assess selection and adaptation processes in old versus young genes.

    Article  Google Scholar 

  22. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Domazet-Loso, T., Brajković, J. & Tautz, D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 23, 533–539 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Domazet-Loso, T. & Tautz, D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 8, 66 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Domazet-Loso, T. & Tautz, D. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468, 815–818 (2010). A systematic study that showed a clear link between phylogenetically young (that is, orphan) genes and global morphological divergence in the developmental context.

    Article  CAS  PubMed  Google Scholar 

  26. Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nature Rev. Genet. 12, 363–376 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes. Nature Genet. 24, 363–367 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Kaessmann, H., Vinckenbosch, N. & Long, M. RNA-based gene duplication: mechanistic and evolutionary insights. Nature Rev. Genet. 10, 19–31 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Dorit, R. L., Schoenbach, L. & Gilbert, W. How big is the universe of exons? Science 250, 1377–1382 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Patthy, L. Genome evolution and the evolution of exon-shuffling—a review. Gene 238, 103–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Kaessmann, H., Zöllner, S., Nekrutenko, A. & Li, W. H. Signatures of domain shuffling in the human genome. Genome Res. 12, 1642–1650 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buljan, M., Frankish, A. & Bateman, A. Quantifying the mechanisms of domain gain in animal proteins. Genome Biol. 11, R74 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cortez, D., Forterre, P. & Gribaldo, S. A hidden reservoir of integrative elements is the major source of recently acquired foreign genes and ORFans in archaeal and bacterial genomes. Genome Biol. 10, R65 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhaxybayeva, O. & Doolittle, W. F. Lateral gene transfer. Curr. Biol. 21, R242–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Keeling, P. J. & Palmer, J. F. Horizontal gene transfer in eukaryotic evolution. Nature Rev. Genet. 9, 605–618 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Lynch, M. & Katju, V. The altered evolutionary trajectories of gene duplicates. Trends Genet. 20, 544–549 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: how duplicated genes find new functions. Nature Rev. Genet. 9, 938–950 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Nekrutenko, A., Wadhawan, S., Goetting-Minesky, P. & Makova, K. D. Oscillating evolution of a mammalian locus with overlapping reading frames: an XLαs/ALEX relay. PLoS Genet. 1, e18 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nature Rev. Genet. 10, 155–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Cai, J. J., Zhao, R., Jiang, H. & Wang, W. De novo origination of a new proteincoding gene in Saccharomyces cerevisiae. Genetics 179, 487–496 (2008). This was the first study that provided direct functional evidence for the evolution of a completely new ORF out of a previously non-coding RNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heinen, T. J., Staubach, F., Häming, D. & Tautz, D. Emergence of a new gene from an intergenic region. Curr. Biol. 19, 1527–1531 (2009). This was the first study that provided direct functional evidence for the de novo evolution of a new transcript out of a non-coding genomic region.

    Article  CAS  PubMed  Google Scholar 

  42. Knowles, D. G. & McLysaght, A. Recent de novo origin of human proteincoding genes. Genome Res. 19, 1752–1759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, D. et al. A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. Cell Res. 20, 408–420 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Li, C. Y. et al. A human-specific de novo proteincoding gene associated with human brain functions. PLoS Comput. Biol. 6, e1000734 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Levine, M. T., Jones, C. D., Kern, A. D., Lindfors, H. A. & Begun, D. J. Novel genes derived from non-coding DNA in Drosophila melanogaster are frequently Xlinked and show testis-biased expression. Proc. Natl Acad. Sci. USA 103, 9935–9939 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Begun, D. J., Lindfors, H. A., Kern, A. D. & Jones, C. D. Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade. Genetics 176, 1131–1137 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou, Q. et al. On the origin of new genes in Drosophila. Genome Res. 18, 1446–1455 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Toll-Riera, M. et al. Origin of primate orphan genes: a comparative genomics approach. Mol. Biol. Evol. 26, 603–612 (2009). This is currently the most comprehensive systematic survey of orphan genes in primates, drawing specific reference to the modes of origin of this gene class.

    Article  CAS  PubMed  Google Scholar 

  49. Ekman, D. & Elofsson, A. Identifying and quantifying orphan protein sequences in fungi. J. Mol. Biol. 396, 396–405 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Carninci, P. RNA dust: where are the genes? DNA Res. 17, 51–59 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sassone-Corsi, P. Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296, 2176–2178 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Kleene, K. C. Sexual selection, genetic conflict, selfish genes, and the atypical patterns of gene expression in spermatogenic cells. Dev. Biol. 277, 16–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Pál, C., Papp, B. & Lercher, M. J. An integrated view of protein evolution. Nature Rev. Genet. 7, 337–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Cai, J. J., Woo, P. C., Lau, S. K., Smith, D. K. & Yuen, K. Y. Accelerated evolutionary rate may be responsible for the emergence of lineagespecific genes in ascomycota. J. Mol. Evol. 63, 1–11 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Domazet-Loso, T. & Tautz, D. An evolutionary analysis of orphan genes in Drosophila. Genome Res. 13, 2213–2219 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pál, C., Papp, B. & Hurst, L. D. Highly expressed genes in yeast evolve slowly. Genetics 158, 927–931 (2001).

    PubMed  PubMed Central  Google Scholar 

  57. Subramanian, S. & Kumar, S. Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. Genetics 168, 373–381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lemos, B., Bettencourt, B. R., Meiklejohn, C. D. & Hartl, D. L. Evolution of proteins and gene expression levels are coupled in Drosophila and are independently associated with mRNA abundance, protein length, and number of protein–protein interactions. Mol. Biol. Evol. 22, 1345–1354 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Drummond, D. A., Raval, A. & Wilke, C. O. A single determinant dominates the rate of yeast protein evolution. Mol. Biol. Evol. 23, 327–337 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Vishnoi, A., Kryazhimskiy, S., Bazykin, G. A., Hannenhalli, S. & Plotkin, J. B. Young proteins experience more variable selection pressures than old proteins. Genome Res. 20, 1574–1581 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lipman, D. J., Souvorov, A., Koonin, E. V., Panchenko, A. R. & Tatusova, T. A. The relationship of protein conservation and sequence length. BMC Evol. Biol. 2, 20 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hurst, L. D. & Smith, N. G. C. Do essential genes evolve slowly? Curr. Biol. 9, 747–750 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Hirsh, A. E. & Fraser, H. B. Protein dispensability and rate of evolution. Nature 411, 1046–1049 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Wall, D. P. et al. Functional genomic analysis of the rates of protein evolution. Proc. Natl Acad. Sci. USA 102, 5483–5488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Drummond, D. A. & Wilke, C. O. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134, 341–352 (2008). This paper investigates the selective pressures behind protein evolution and suggests that selection against the toxicity of misfolded proteins generated by ribosome errors is a major mechanism that limits the number of genes in a genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Krylov, D. M., Wolf, Y. I., Rogozin, I. B. & Koonin, E. V. Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res. 13, 2229–2235 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Borenstein, E., Shlomi, T., Ruppin, E. & Sharan, R. Gene loss rate: a probabilistic measure for the conservation of eukaryotic genes. Nucleic Acids Res. 35, e7 (2007).

    Article  PubMed  Google Scholar 

  68. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A neoproterozoic snowball earth. Science 281, 1342–1346 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, H. et al. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc. Natl Acad. Sci. USA 106, 3853–3858 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Siepel, A. Darwinian alchemy: human genes from noncoding DNA. Genome Res. 19, 1693–1695 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Orengo, C. A. & Thornton, J. M. Protein families and their evolution—a structural perspective. Annu. Rev. Biochem. 74, 867–900 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Fetrow, J. S. & Godzik, A. Function driven protein evolution. A possible proto-protein for the RNA-binding proteins. Pac. Symp. Biocomput. 3, 485–496 (1998).

    Google Scholar 

  73. Lupas, A. N., Ponting, C. P. & Russell, R. B. On the evolution of protein folds: are similar motifs in different protein folds the result of convergence, insertion, or relics of an ancient peptide world? J. Struct. Biol. 134, 191–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Söding, J. & Lupas, A. N. More than the sum of their parts: on the evolution of proteins from peptides. Bioessays 25, 837–846 (2003).

    Article  PubMed  CAS  Google Scholar 

  75. Alva, V., Remmert, M., Biegert, A., Lupas, A. N. & Söding, J. A galaxy of folds. Protein Sci. 19, 124–130 (2010).

    CAS  PubMed  Google Scholar 

  76. Zhang, Y., Hubner, I. A., Arakaki, A. K., Shakhnovich, E. & Skolnick, J. On the origin and highly likely completeness of single-domain protein structures. Proc. Natl Acad. Sci. USA 103, 2605–2610 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sammut, S. J., Finn, R. D. & Bateman, A. Pfam 10 years on: 10 000 families and still growing. Brief. Bioinform. 9, 210–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Levitt, M. Nature of the protein universe. Proc. Natl Acad. Sci. USA 106, 11079–11084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kunin, V. et al. Myriads of protein families, and still counting. Genome Biol. 4, 401 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yooseph, D. et al. The Sorcerer II global ocean sampling expedition: expanding the universe of protein families. PLoS Biol. 5, e16 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Cheng, H., Kim, B. H. & Grishin, N. V. MALISAM: a database of structurally analogous motifs in proteins. Nucleic Acids Res. 36, D211–D217 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Marsden, R. L., Lee, D., Maibaum, M., Yeats, C. & Orengo, C. A. Comprehensive genome analysis of 203 genomes provides structural genomics with new insights into protein family space. Nucleic Acids Res. 34, 1066–1080 (2006). This study provides an analysis of 203 completed genomes (mostly from bacteria and archaea) and demonstrates that the number of protein families is continually expanding over time and that orphans appear to be an intrinsic part of these genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, D., Grant, A., Marsden, R. L. & Orengo, C. Identification and distribution of protein families in 120 completed genomes using Gene3D. Proteins 59, 603–615 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Siew, N. & Fischer, D. Structural biology sheds light on the puzzle of genomic ORFans. J. Mol. Biol. 342, 369–373 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Narra, H. P., Cordes, M. H. & Ochman, H. Structural features and the persistence of acquired proteins. Proteomics 8, 4772–4781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Capra, J. A., Pollard, K. S. & Singh, M. Novel genes exhibit distinct patterns of function acquisition and network integration. Genome Biol. 11, R127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Biegert, A., Mayer, C., Remmert, M., Söding, J. & Lupas, A. The MPI Toolkit for protein sequence analysis. Nucleic Acids Res. 34, W335–W339 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nature Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article  CAS  Google Scholar 

  89. Mészáros, B., Tompa, P., Simon, I. & Dosztányi, Z. Molecular principles of the interactions of disordered proteins. J. Mol. Biol. 372, 549–561 (2007).

    Article  PubMed  CAS  Google Scholar 

  90. Schlessinger, A. et al. Protein disorder—a breakthrough invention of evolution? Curr. Opin. Struct. Biol. 21, 412–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Tompa, P. & Kovacs, D. Intrinsically disordered chaperones in plants and animals. Biochem. Cell Biol. 88, 167–174 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Duboule, D. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev. Suppl. 1994, 135–142 (1994).

    Google Scholar 

  93. Chen, S., Zhang, Y. E. & Long, M. New genes in Drosophila quickly become essential. Science 330, 1682–1685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ellrott, K., Jaroszewski, L., Li, W., Wooley, J. C. & Godzik, A. Expansion of the protein repertoire in newly explored environments: human gut microbiome specific protein families. PLoS Comput. Biol. 6, e1000798 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kuo, C. H. & Kissinger, J. C. Consistent and contrasting properties of lineage-specific genes in the apicomplexan parasites Plasmodium and Theileria. BMC Evol. Biol. 8, 108 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Khalturin, K. et al. A novel gene family controls species-specific morphological traits in Hydra. PLoS Biol. 6, e278 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Colbourne, J. K. et al. The ecoresponsive genome of Daphnia pulex. Science 331, 555–561 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tautz, D. A genetic uncertainty problem. Trends Genet. 16, 475–477 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Hoekstra, H. E. & Coyne, J. A. The locus of evolution: evo devo and the genetics of adaptation. Evolution 61, 995–1016 (2007).

    Article  PubMed  Google Scholar 

  100. Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank former and current colleagues and laboratory members, as well as three anonymous reviewers who have contributed to the ideas presented here. We thank R. Neme, M. Matejcˇic´ and M. S. Šestak for providing phylostratigraphic maps. The work of the authors is supported by institutional funds of the Max-Planck Society, the Ruđer Boškovic´ Institute, the Zoological Institute of the Christian-Albrechts-University Kiel and the Unity Through Knowledge Fund (grant number 49).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethard Tautz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Diethard Tautz's homepage

Tomislav Domazet-Lošo's homepage

Glossary

Orphan genes

Genes that lack homologues in other lineages — that is, they cannot be linked by overall similarity or shared domains to genes or gene families known from other organisms.

Purifying selection

The removal of deleterious mutations through natural selection.

Basic Local Alignment Search Tool

(BLAST). A program that compares nucleotide or protein sequences to sequence databases and calculates the statistical significance of matches.

Protostomes

The animal superphylum that includes nematodes (for example, Caenorhabditis elegans) and arthropods (for example, Drosophila melanogaster).

Deuterostomes

The animal superphylum that includes vertebrates (for example, zebrafish) and mammals (for example, humans).

Founder genes

The phylogenetically oldest genes forming the basis of a new gene lineage, new protein domain or new gene family. The origin of founder genes is expected to correlate with evolution of functional novelty.

Phylostratigraphy

A systematic procedure to identify the origin of genes within a comparative framework of fully sequenced genomes at multiple levels of the phylogenetic hierarchy (the phylostrata).

Horizontal gene transfer

(HGT). The exchange of genes between different evolutionary lineages.

Retrotransposons

Transposons that require an RNA intermediate for their transposition.

Sexual selection

A form of selection that arises from the interaction between the sexes and their gametes rather than from interactions with the environment.

Positive selection

The increase in frequency and fixation of alleles that contributes to the fitness of an organism.

Selective sweeps

The reduction or elimination of nucleotide variation in the genomic region that surrounds a positively selected new mutation.

Phylostratum

A node in the phylogenetic hierarchy that is represented by one or more fully sequenced genomes and where a set of genes from an organism coalesce to founder genes.

Synteny

Conserved genomic arrangements of genes in a linear order.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tautz, D., Domazet-Lošo, T. The evolutionary origin of orphan genes. Nat Rev Genet 12, 692–702 (2011). https://doi.org/10.1038/nrg3053

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing