Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Behavioral and pharmacologic therapies for obesity

Abstract

This article reviews novel developments in the behavioral and pharmacologic treatment of obesity and explores the potential contribution of genomics research to weight control. A comprehensive program of lifestyle modification, comprised of diet, physical activity and behavior therapy, induces a mean loss of 7–10% of initial weight in individuals with obesity. Two trials demonstrated that weight loss of this magnitude, combined with increased physical activity, substantially reduced the risk of developing type 2 diabetes mellitus in individuals with impaired glucose tolerance. A third trial is now investigating whether lifestyle intervention will reduce cardiovascular morbidity and mortality in overweight individuals who already have diabetes mellitus. Pharmacotherapy is recommended, in some patients, as an adjunct to lifestyle modification. Two medications—orlistat and sibutramine—are currently approved in the US for long-term weight loss. Both are efficacious when combined with lifestyle modification, although health concerns have been raised about the use of sibutramine. Several novel combination therapies, which target multiple hypothalamic pathways that regulate appetite and body weight, are currently under investigation. Genomic studies provide further evidence for the role of these pathways in the regulation of body weight. Identification of new genes controlling satiety and energy expenditure may yield valuable clues for the development of novel pharmacologic treatments.

Key Points

  • Lifestyle modification (behavioral weight management) is the first step to reduce obesity, as recommended by the WHO and the NIH

  • Weight losses of 7–10% of initial weight are typically achieved, but patients regain one-third of lost weight in the first year after treatment

  • Low-carbohydrate, low-fat and low glycemic index diets have all been shown to be effective, but reducing the number of calories ingested is the best predictor of weight loss

  • Sibutramine and orlistat are the only FDA-approved drugs for long-term weight loss, whereas medications such as phentermine are approved for short-term weight loss

  • Monogenic mutations that cause marked obesity, such as mutations in the leptin receptor, are well-established but very rare, indicating that obesity is probably the result of polygenic mutations

  • Genome-wide association studies have so far identified at least three new candidate genes as potential pharmacologic targets—fat mass and obesity associated (FTO), melanocortin receptor 4 (MC4R) and neuroendocrine convertase 1 (PCSK1)

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuronal control of energy intake.

Similar content being viewed by others

References

  1. WHO. Obesity: Preventing and Managing the Global Epidemic (WHO, Geneva, 1998).

  2. [No authors listed] Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. National Institutes of Health. Obes. Res. 6 (Suppl. 2), 51S–209S (1998).

  3. National Heart, Lung, and Blood Institute (NHLBI) and the North American Association for the Study of Obesity (NAASO). The Practical Guide: Identification, Evaluation, and Treatment of Overweight and Obesity in Adults (National Institutes of Health, Bethesda, MD, 2000).

  4. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention of metformin. N. Engl. J. Med. 346, 393–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Look AHEAD Research Group et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results from the Look AHEAD trial. Diabetes Care 30, 1374–1383 (2007).

  7. Look AHEAD Research Group et al. The Look AHEAD study: a description of the lifestyle intervention and the evidence supporting it. Obesity 14, 737–752 (2006).

  8. Wing, R. R. Reduction in weight and cardiovascular disease (CVD) risk factors in subjects with type 2 diabetes (T2DM): four-year results of Look AHEAD [abstract 06-0R]. Obesity 17 (Suppl. 2), S49 (2009).

    Google Scholar 

  9. Wadden, T. A. & Foster, G. D. Behavioral treatment of obesity. Med. Clin. North Am. 84, 441–461 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Wadden, T. A., Butryn, M. L. & Wilson, C. Lifestyle modification for the management of obesity. Gastroenterology 132, 2226–2238 (2007).

    Article  PubMed  Google Scholar 

  11. Renjilian, D. A. et al. Individual versus group therapy for obesity: effects of matching participants to their treatment preferences. J. Consult. Clin. Psychol. 69, 717–721 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Tate, D. F., Wing, R. R. & Winett, R. A. Using internet technology to deliver a behavioral weight loss program. JAMA 285, 1172–1177 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Rothert, K. et al. Web-based weight management programs in an integrated health care setting: a randomized, controlled trial. Obesity 14, 266–272 (2006).

    Article  PubMed  Google Scholar 

  14. Tate, D. F., Jackvony, E. H. & Wing, R. R. A randomized trial comparing human e-mail counseling, computer-automated tailored counseling, and no counseling in an Internet weight loss program. Arch. Intern. Med. 166, 1620–1625 (2006).

    Article  PubMed  Google Scholar 

  15. Harvey-Berino, J. et al. Does using the Internet facilitate the maintenance of weight loss? Int. J. Obes. Relat. Disord. 26. 1254–1260 (2002).

    Article  CAS  Google Scholar 

  16. Departments of Agriculture and Health and Human Services. Dietary Guidelines for Americans (US Department of Agriculture, US Department of Health and Human Services, Washington, DC, 2005).

  17. Diabetes Prevention Program Research Group. The Diabetes Prevention Program: description of lifestyle intervention. Diabetes Care 25, 2165–2171 (2002).

  18. Brownell, K. D. The LEARN Program for Weight Management (American Health Publishing Dallas, TX, 2000).

    Google Scholar 

  19. Samaha, F. F. et al. A low-carbohydrate as compared with a low-fat diet in severe obesity. N. Engl. J. Med. 348, 2074–2081 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Nordmann, A. J. et al. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch. Intern. Med. 166, 285–293 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Brand Miller, J., Hayne, S., Petocz, P. & Colagiuri, S. Low-glycemic index diets in the management of diabetes. Diabetes Care 26, 2261–2267 (2003).

    Article  PubMed  Google Scholar 

  22. Thomas, D. E., Elliott, E. J. & Baur, L. Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database of Systematic Reviews, Issue 3. Art No.: CD005105 doi:10.1002/14651858.CD005105.pub2 (2007).

    Google Scholar 

  23. Shai, I. et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 359, 229–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Esposito, K. et al. Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: a randomized trial. Ann. Intern. Med. 151, 306–314 (2009).

    Article  PubMed  Google Scholar 

  25. Buckland, G., Bach, A. & Serra-Majem, L. Obesity and the Mediterranean diet: a systematic review of observational and intervention studies. Obes. Rev. 9, 582–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Dansinger, M. L., Gleason, J. A., Griffith, J. L., Selker, H. P. & Schaefer, E. J. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss: a randomized trial. JAMA 293, 43–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Sacks, F. M. et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 360, 859–873 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fung, T. T. et al. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation 119, 1093–1100 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Blair, S. N. & Leermakers, E. A. in Handbook of Obesity Treatment (eds Wadden, T. A. & Stunkard, A. J.) 283–300 (Guilford Press, New York, 2002).

    Google Scholar 

  30. Haskell, W. L. et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 39, 1423–1434 (2007).

    Article  PubMed  Google Scholar 

  31. Lee, C. D., Blair, S. N. & Jackson, A. S. Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am. J. Clin. Nutr. 69, 373–380 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Stevens, J., Cai, J., Evenson, K. R. & Thomas, R. Fitness and fatness as predictors of mortality from all causes and from cardiovascular disease in men and women in the lipid research clinics study. Am. J. Epidemiol. 156, 832–841 (2002).

    Article  PubMed  Google Scholar 

  33. Hu, F. B. et al. Adiposity as compared with physical activity in predicting mortality among women. N. Engl. J. Med. 351, 2694–2703 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Donnelly, J. E. et al. American College of Sports Medicine position stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 41, 459–471 (2009).

    Article  PubMed  Google Scholar 

  35. Bweir, S. et al. Resistance exercise training lowers HbA1c more than aerobic training in adults with type 2 diabetes. Diabetol. Metab. Syndr. 10, 27 (2009).

    Article  CAS  Google Scholar 

  36. Jakicic, J. M., Donnelly, J. E., Pronk, N. P., Jawad, A. F. & Jacobsen, D. J. Prescription of exercise intensity for the obese patient: the relationship between heart rate, VO2, and perceived exertion. Int. J. Obes. Relat. Metab. Disord. 19, 382–387 (1995).

    CAS  PubMed  Google Scholar 

  37. Jakicic, J. M., Winters, C., Lang, W. & Wing, R. R. Effects of intermittent exercise and use of home exercise equipment on adherence, weight loss, and fitness in overweight women: a randomized trial. JAMA 282, 1554–1560 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Andersen, R. E. et al. Effects of lifestyle activity vs structured aerobic exercise in obese women: a randomized trial. JAMA 281, 335–340 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Dunn, A. L. et al. Comparison of lifestyle and structured interventions to increase physical activity and cardiorespiratory fitness: a randomized trial. JAMA 281, 327–334 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Bravata, D. M. et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA 298, 2296–2304 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Brownell, K. D. & Horgen, K. B. Food Fight: The Inside Story of America's Obesity Crisis and What We Can Do About It (Contemporary Books, Chicago, 2003).

    Google Scholar 

  42. Rosenbaum, M. et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J. Clin. Invest. 115, 3579–3586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Svetkey, L. P. et al. Comparison of strategies for sustaining weight loss: the weight loss maintenance randomized controlled trial. JAMA 299, 1139–1148 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Perri, M. G. et al. Effects of four maintenance programs on the long-term management of obesity. J. Consult. Clin. Psychol. 56, 529–534 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Wing, R. R., Tate, D. F., Gorin, A. A., Raynor, H. A. & Fava, J. L. A self-regulation program for maintenance of weight loss. N. Engl. J. Med. 355, 1563–1571 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Jeffery, R. W., Wing, R. R., Sherwood, N. E. & Tate, D. F. Physical activity and weight loss: does prescribing higher physical activity goals improve outcome? Am. J. Clin. Nutr. 78, 684–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Wing, R. R. & Hill, J. O. Successful weight loss maintenance. Annu. Rev. Nutr. 21, 323–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Wadden, T. A. et al. Randomized trial of lifestyle modification and pharmacotherapy for obesity. N. Engl. J. Med. 353, 2111–2120 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. James, W. P. et al. Effect of sibutramine on weight maintenance after weight loss: a randomised trial. STORM Study Group. Sibutramine Trial of Obesity Reduction and Maintenance. Lancet 356, 2119–2125 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Sjöström, L. et al. Randomized placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. European Multicenter Orlistat Study Group. Lancet 352, 167–172 (1998).

    Article  PubMed  Google Scholar 

  51. Davidson, M. H. et al. Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat: a randomized controlled trial. JAMA 281, 235–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Bray, G. A. & Ryan, D. H. Drug treatment of the overweight patient. Gastroenterology 132, 2239–2252 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, M. & Aronne, L. J. Weight management for type 2 diabetes mellitus: global cardiovascular risk reduction. Am. J. Cardiol. 99 (Suppl.), 68B–79B (2007).

    Article  PubMed  Google Scholar 

  54. Rucker, D., Padwal, R., Li, S. K., Curioni, C. & Lau, D. C. Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ 335, 1194–1199 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Filippatos, T. D. et al. Orlistat-associated adverse effects and drug interactions: a critical review. Drug Saf. 31, 53–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. U.S. Food and Drug Administration. Early communication about an ongoing safety review orlistat (marketed as Alli and Xenical) [online], (2009).

  57. Torgerson, J. S., Hauptman, J., Boldrin, M. N. & Sjöström, L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: A randomized study of orlistat as an adjunct to lifestyle changes in the prevention of type 2 diabetes in obese patients. Diabetes Care 27, 155–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Digenio, A. G., Mancuso, J. P., Gerber, R. A. & Dvorak, R. V. Comparison of methods for delivering a lifestyle modification program for obese patients: a randomized trial. Ann. Intern. Med. 150, 255–262 (2009).

    Article  PubMed  Google Scholar 

  59. Wadden, T. A. et al. Benefits of lifestyle modification in the pharmacologic treatment of obesity: a randomized trial. Arch. Intern. Med. 161, 218–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Torp-Pedersen, C. et al. Cardiovascular response to weight management and sibutramine in high-risk subjects: an analysis from the SCOUT trial. Eur. Heart J. 28, 2915–2923 (2007).

    Article  PubMed  Google Scholar 

  61. US Food and Drug Administration. Follow-up to the November 2009 early communication about an ongoing safety review of sibutramine, marketed as Meridia [online], (2010).

  62. European Medicines Agency. European Medicines Agency recommends suspension of marketing authorizations for sibutramine [online], (2010).

  63. Haddock, C. K., Poston, W. S., Dill, P. L., Foreyt, J. P. & Ericsson, M. Pharmacotherapy for obesity: a quantitative analysis of four decades of published randomized clinical trials. Int. J. Obes. Relat. Metab. Disord. 26, 262–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Munro, J. F., MacCuish, A. C., Wilson, E. M. & Duncan, L. J. Comparison of continuous and intermittent anorectic therapy in obesity. Br. Med. J. 1, 352–354 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bray, G. A. & Greenway, F. L. in Treatment of the Obese Patient (eds Kushner, R. F. & Bessesen, D. H.) 341–368 (Humana Press, New Jersey, 2007).

    Book  Google Scholar 

  66. Connolly, H. M. et al. Valvular heart disease associated with fenfluramine-phentermine. N. Engl. J. Med. 337, 581–588 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Li, Z. et al. Meta-analysis: pharmacologic treatment of obesity. Ann. Intern. Med. 142, 532–546 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Jones, D. Novel pharmacotherapies for obesity poised to enter the market. Nat. Rev. Drug Discov. 8, 833–834 (2009).

    Article  PubMed  CAS  Google Scholar 

  69. Flier, J. S. Obesity wars: molecular progress confronts an expanding epidemic. Cell 116, 337–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S. & Schwartz, M. W. Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Ahima, R. S. & Flier, J. S. Leptin. Annu. Rev. Physiol. 62, 413–437 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Greenway, F. L. et al. Comparison of combined bupropion and naltrexone therapy for obesity with monotherapy and placebo. J. Clin. Endocrinol. Metab. 94, 4898–4906 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Wadden, T. A. et al. Weight loss with naltrexone SR/buprobion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial. Obesity doi:10.1038/oby.2010.147.

  74. Oommen, K. J. & Mathews, S. Zonisamide: a new antiepileptic drug. Clin. Neuropharmacol. 22, 192–200 (1999).

    CAS  PubMed  Google Scholar 

  75. Gadde, K. M., Franciscy, D. M., Wagner, H. R. & Krishnan, K. R. Zonisamide for weight reduction in obese adults: a randomized controlled trial. JAMA 289, 1820–1825 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Landbloom, R. et al. Long term weight loss from a dose optimization study with zonisamide SR and bupropion SR [abstract 61-OR]. Obesity 16 (Suppl. 1), S63–S64 (2008).

    Google Scholar 

  77. Gadde, K. M. et al. A 24-week randomized controlled trial of VO-0521, a combination weight loss therapy, in obese adults [abstract 55-OR]. Obes. Res. 14, A17 (2006).

    Google Scholar 

  78. Aronne, L. J. et al. Weight loss with VI-0521 (phentermine/controlled release topiramate) stops progression toward type 2 diabetes in obese non-diabetic subjects. Diabetes 58, A32 (2009).

    Google Scholar 

  79. Gadde, K. M. & Allison, D. B. Combination therapy for obesity and metabolic disease. Curr. Opin. Endocrinol. Diabetes Obes. 16, 353–358 (2009).

    Article  PubMed  Google Scholar 

  80. Astrup, A. et al. Topiramate: long-term maintenance of weight loss induced by a low-calorie diet in obese subjects. Obes. Res. 12, 1658–1669 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Roth, J. D. et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc. Natl Acad. Sci. USA 105, 7257–7262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Trevaskis, J. L. et al. Amylin-mediated restoration of leptin responsiveness in diet-induced obesity: magnitude and mechanisms. Endocrinology 149, 5679–5687 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Ravussin, E. et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity 17, 1736–1743 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Smith, S. R. et al. Effect of APD356, a selective 5-HT-2C agonist, on weight loss in a 4-week study of healthy obese patients [abstract]. Obes. Res. 13 (Suppl.), A1–A218 (2005).

    Google Scholar 

  85. Smith, S. R., Prosser, W., Donahue, D., Anderson, C. M. & Shanahan, W. APD356, an orally-selective 5-HT-2C agonist, reduces body weight in obese adult men and women [abstract]. Diabetes 55 (Suppl. 1), A80 (2006).

    Google Scholar 

  86. Thomsen, W. J. et al. Lorcaserin, a novel selective human 5-hydroxytryptamine 2c agonist: in vitro and in vivo pharmacological characterization. J. Pharmacol. Exp. Ther. 325, 577–587 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Smith, S. R., Weissman, N. J., Scott, S., Anderson, C. M. & Shanahan, W. R. Lorcaserin reduces body weight in obese and overweight subjects: behavioral modification and lorcaserin for overweight and obesity management, the BLOOM trial [abstract]. American Diabetes Association (ADA) 69th Annual Scientific Sessions, A96-LB (2009).

    Google Scholar 

  88. Maes, H. H., Neale, M. C. & Eaves, L. J. Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet. 27, 325–341 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Wardle, J., Carnell, S., Haworth, C. M. & Plomin, R. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am. J. Clin. Nutr. 87, 398–404 (2006).

    Article  Google Scholar 

  90. Stunkard, A. J. et al. An adoption study of human obesity. N. Engl. J. Med. 314, 193–198 (1986).

    Article  CAS  PubMed  Google Scholar 

  91. Vogler, G. P., Sørensen, T. I., Stunkard, A. J., Srinivasan, M. R. & Rao, D. C. Influences of genes and shared family environment on adult body mass assessed in an adoption study by a comprehensive path model. Int. J. Obes. Relat. Metab. Disord. 19, 40–45 (1995).

    CAS  PubMed  Google Scholar 

  92. Hainer, V. et al. Role of hereditary factors in weight loss and its maintenance. Physiol. Res. 57 (Suppl. 1), S1–S15 (2008).

    CAS  PubMed  Google Scholar 

  93. Blakemore, A. I. & Froguel, P. Is obesity our genetic legacy? J. Clin. Endocrinol. Metab. 93 (Suppl. 1), S51–S56 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Dhillon, H. et al. Long-term differential modulation of genes encoding orexigenic and anorexigenic peptides by leptin delivered by rAAV vector in ob/ob mice. Relationship with body weight change. Regul. Pep. 92, 97–105 (2000).

    Article  CAS  Google Scholar 

  95. Li, G., Mobbs, C. V. & Scarpace, P. J. Central pro-opiomelanocortin gene delivery results in hypophagia, reduced visceral adiposity, and improved insulin sensitivity in genetically obese Zucker rats. Diabetes 52, 1951–1957 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Kalra, S. P. & Kalra, P. S. Gene-transfer technology: a preventive neurotherapy to curb obesity, ameliorate metabolic syndrome and extend life expectancy. Trends Pharmacol. Sci. 26, 488–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Ranadive, S. A. & Vaisse, C. Lessons from extreme human obesity monogenic disorders. Endocrinol. Metab. Clin. North Am. 37, 733–751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stutzmann, F. et al. Prevalence of melanocortin-4 receptor deficiency in Europeans and their age-dependent penetrance in multigenerational pedigrees. Diabetes 57, 2511–2518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Farooqi, I. S. et al. Clinical spectrum of obesity and mutations in the melanocortin-4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Li, S. & Loos, R. J. Progress in the genetics of common obesity: size matters. Curr. Opin. Lipidol. 19, 113–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. De Krom, M. et al. Common genetic variations in CKK, leptin, and leptin receptor genes are associated with specific human eating patterns. Diabetes 56, 276–280 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cecil, J. E., Tavendale, R., Watt, P., Hetherington, M. M. & Palmer, C. N. An obesity-associated FTO gene variant and increased energy intake in children. N. Engl. J. Med. 359, 2558–2566 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Haupt, A. et al. Variation in the FTO gene influences food intake but not energy expenditure. Exp. Clin. Endocrinol. Diabetes 117, 194–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Speakman, J. R., Rance, K. A. & Johnstone, A. M. Polymorphisms of the FTO gene are association with a variation in energy intake, but not energy expenditure. Obesity 16, 1961–1965 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Timpson, N. J. et al. The fat mass- and obesity-associated locus and dietary intake in children. Am. J. Clin. Nutr. 88, 971–978 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Gerken, T. et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318, 1469–1472 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tung, Y. C. L. et al. Hypothalamic-specific manipulation of Fto, the ortholog of the human obesity gene FTO, affects food intake in rats. PLoS ONE 5, e8771 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Loos, R. J. et al. Common variants near MC4R are associated with fat mass, weight, and risk of obesity. Nat. Genet. 40, 768–775 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Willer, C. J. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41, 25–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Thorleifsson, G. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 41, 18–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Meyre, D. et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat. Genet. 41, 157–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Hofker, M. & Wijmenga, C. A supersized list of obesity genes. Nat. Genet. 41, 139–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Zolotukhin, S. Gene therapy for obesity. Expert Opin. Biol. Ther. 5, 347–357 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Ahima, R. S. Obesity gene therapy: slimming immature rats. Gene Therapy 10, 196–197 (2003).

    Article  CAS  Google Scholar 

  116. Barsh, G. S. & Schwartz, M. W. Genetic approaches to studying energy balance: perception and integration. Nat. Rev. Genet. 3, 589–600 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Gardner, C. D. et al. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. JAMA 297, 969–977 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Stern, L. et al. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann. Intern. Med. 140, 778–785 (2004).

    Article  PubMed  Google Scholar 

  119. Foster, G. D. et al. A randomized trial of a low-carbohydrate diet for obesity. N. Engl. J. Med. 348, 2082–2090 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Yancy, W. S. et al. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann. Intern. Med. 140, 769–777 (2004).

    Article  PubMed  Google Scholar 

  121. Brinkworth, G. D. et al. Long-term effects of advice to consume a high-protein, low-fat diet, rather than a conventional weight-loss diet, in obese adults with type 2 diabetes: one-year follow-up of a randomised trial. Diabetologia 47, 1677–1686 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Iqbal, N. et al. Effects of a low-intensity intervention that prescribed a low-carbohydrate vs. a low-fat diet in obese, diabetic participants. Obesity doi:10.1038/oby.2009.460.

  123. Klemsdal, T. O. et al. Effects of a low glycemic load diet versus a low-fat diet in subjects with and without the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 20, 195–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Das, S. K. et al. Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in CALERIE: a 1-y randomized controlled trial. Am. J. Clin. Nutr. 85, 1023–1030 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Estruch, R. et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann. Intern. Med. 145, 1–11 (2006).

    Article  PubMed  Google Scholar 

  126. Brehm, B. J. et al. One-year comparison of a high-monounsaturated fat diet with a high-carbohydrate diet in type 2 diabetes. Diabetes Care 32, 215–220 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T. A. Wadden is supported by grant K24-DK065018 from the National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article and provided a substantial contribution to discussions of the content. M. L. Vetter, L. F. Faulconbridge and T. A. Wadden contributed to writing the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Thomas A. Wadden.

Ethics declarations

Competing interests

T. A. Wadden declares an association with the following companies: Novo Nordisk (consultant, grant/research support), Orexigen Therapeutics (consultant, grant/research support), Vivus (consultant, grant/research support), Wyeth Pharmaceuticals (consultant). The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetter, M., Faulconbridge, L., Webb, V. et al. Behavioral and pharmacologic therapies for obesity. Nat Rev Endocrinol 6, 578–588 (2010). https://doi.org/10.1038/nrendo.2010.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing