Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translating neoadjuvant therapy into survival benefits: one size does not fit all

Key Points

  • Neoadjuvant therapy is the standard of care for patients with locally advanced breast cancer and can improve operability of breast cancer

  • For patients with HER2-positive breast cancer, the long-term outcomes of neoadjuvant treatment with the anti-HER2 agent trastuzumab should be considered equivalent to those of adjuvant therapy with this drug

  • Despite the success of some neoadjuvant trials of dual-agent HER2 therapy for HER2-positive breast cancer, additional overall survival benefits of this approach over single-agent trastuzumab have not been documented in adjuvant trials

  • Differences in clinical-trial designs, patient characteristics, breast-cancer biology, and the sequence and schedule of drug administration might have influenced the results of neoadjuvant trials and the contrasting results seen in adjuvant trials

  • Prospective neoadjuvant trials with treatment informed by biomarkers and administration of matched experimental drug regimens should address the biological heterogeneity observed within breast-cancer subtypes

Abstract

Neoadjuvant therapy has been established as an effective therapeutic approach for patients with locally advanced breast cancer. Similar outcomes between neoadjuvant and adjuvant chemotherapy have been demonstrated in several trials. Nevertheless, neoadjuvant therapy has some advantages over adjuvant therapy, including tumour downstaging, in vivo assessment of therapeutic efficacy, reduced treatment durations, and the need to enrol fewer patients for clinical trials to reach their preplanned objectives. The number of neoadjuvant trials in patients with breast cancer has increased substantially in the past 5 years, particularly in the context of HER2-positive disease. Substantial improvements in the pathological complete response rate to anti-HER2 therapy, a proposed surrogate end point for long-term clinical benefit, have been observed with neoadjuvant dual-agent HER2 blockade. Thus, it was hypothesized that this approach would provide additional survival benefits over standard-of-care therapy with the anti-HER2 antibody trastuzumab in the adjuvant setting. Emerging data, however, are calling this notion into question. We discuss potential reasons why results of neoadjuvant trials of targeted therapies have not been mirrored in the adjuvant setting, and other than inherent differences in clinical-trial designs and statistical power, we consider how the biology of the disease, patient characteristics, and drug administration and schedule might influence the results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of the ALTTO and NeoALTTO clinical trials.
Figure 2: Pathological complete response (pCR) and outcomes.
Figure 3: The influence of therapeutic response on survival.
Figure 4: Tumour heterogeneity and drug resistance in the neoadjuvant and adjuvant breast-cancer settings.

Similar content being viewed by others

References

  1. National Comprehensive Cancer Network (NCCN). Clinical practice guidelines in oncology: breast cancer. Version I.2016. [online], (2016).

  2. Schott, A. F. & Hayes, D. F. Defining the benefits of neoadjuvant chemotherapy for breast cancer. J. Clin. Oncol. 30, 1747–1749 (2012).

    Article  PubMed  Google Scholar 

  3. Untch, M., Konecny, G. E., Paepke, S. & von Minckwitz, G. Current and future role of neoadjuvant therapy for breast cancer. Breast 23, 526–537 (2014).

    Article  PubMed  Google Scholar 

  4. von Minckwitz, G. et al. Response-guided neoadjuvant chemotherapy for breast cancer. J. Clin. Oncol. 31, 3623–3630 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Fisher, B. et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J. Clin. Oncol. 16, 2672–2685 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. van der Hage, J. A. et al. Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer Trial 10902. J. Clin. Oncol. 19, 4224–4237 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Mauri, D., Pavlidis, N. & Ioannidis, J. P. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J. Natl Cancer Inst. 97, 188–194 (2005).

    Article  PubMed  Google Scholar 

  8. Chen, A. M. et al. Breast conservation after neoadjuvant chemotherapy: the MD Anderson Cancer Center experience. J. Clin. Oncol. 22, 2303–2312 (2004).

    Article  PubMed  Google Scholar 

  9. Morrow, M. et al. Surgeon recommendations and receipt of mastectomy for treatment of breast cancer. JAMA 302, 1551–1556 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. King, T. A. & Morrow, M. Surgical issues in patients with breast cancer receiving neoadjuvant chemotherapy. Nat. Rev. Clin. Oncol. 12, 335–343 (2015).

    Article  PubMed  Google Scholar 

  11. De Mattos-Arruda, L. & Cortes, J. Advances in first-line treatment for patients with HER-2+ metastatic breast cancer. Oncologist 17, 631–644 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Dawood, S., Broglio, K., Buzdar, A. U., Hortobagyi, G. N. & Giordano, S. H. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J. Clin. Oncol. 28, 92–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Buzdar, A. U. et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J. Clin. Oncol. 23, 3676–3685 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Buzdar, A. U. et al. Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in human epidermal growth factor receptor 2-positive operable breast cancer: an update of the initial randomized study population and data of additional patients treated with the same regimen. Clin. Cancer Res. 13, 228–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Slamon, D. et al. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 365, 1273–1283 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Geyer, C. E. et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 355, 2733–2743 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Swain, S. M. et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 14, 461–471 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Verma, S. et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 367, 1783–1791 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. De Mattos-Arruda, L. & Cortes, J. Use of pertuzumab for the treatment of HER2-positive metastatic breast cancer. Adv. Ther. 30, 645–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Gianni, L. et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 13, 25–32 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Schneeweiss, A. et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol. 24, 2278–2284 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Scaltriti, M. et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 28, 803–814 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Xia, W. et al. Combining lapatinib, a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene 24, 6213–6221 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Baselga, J. et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379, 633–640 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Guarneri, V. et al. Preoperative chemotherapy plus trastuzumab, lapatinib, or both in human epidermal growth factor receptor 2-positive operable breast cancer: results of the randomized phase II CHER-LOB study. J. Clin. Oncol. 30, 1989–1995 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Holmes, F. A. et al. Correlation of molecular effects and pathologic complete response to preoperative lapatinib and trastuzumab, separately and combined prior to neoadjuvant breast cancer chemotherapy [abstract]. J. Clin. Oncol. 29 (Suppl.), 506 (2011).

    Article  Google Scholar 

  31. Zardavas, D., Fouad, T. M. & Piccart, M. Optimal adjuvant treatment for patients with HER2-positive breast cancer in 2015. Breast 24, S143–S148 (2015).

    Article  PubMed  Google Scholar 

  32. Piccart-Gebhart, M. et al. Adjuvant lapatinib and trastuzumab for early human epidermal growth factor receptor 2-positive breast cancer: results from the Randomized Phase III Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization Trial. J. Clin. Oncol. http://dx.doi.org/10.1200/JCO.2015.62.1797 (2015).

  33. Cameron, D. et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol. 14, 933–942 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Miller, K., O'Neill, A. & Dang, C. Bevacizumab (Bv) in the adjuvant treatment of HER2-negative breast cancer: final results from Eastern Cooperative Oncology Group E5103. J. Clin. Oncol. 25 (Suppl. 5), 500 (2014).

    Article  Google Scholar 

  35. von Minckwitz, G. et al. Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N. Engl. J. Med. 366, 299–309 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Bear, H. D. et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N. Engl. J. Med. 366, 310–320 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. von Minckwitz, G. et al. Survival after neoadjuvant chemotherapy with or without bevacizumab or everolimus for HER2-negative primary breast cancer (GBG 44-GeparQuinto). Ann. Oncol. 25, 2363–2372 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. de Azambuja, E. et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol. 15, 1137–1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Giobbie-Hurder, A., Gelber, R. D. & Regan, M. M. Challenges of guarantee-time bias. J. Clin. Oncol. 31, 2963–2969 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ring, A. E., Smith, I. E., Ashley, S., Fulford, L. G. & Lakhani, S. R. Oestrogen receptor status, pathological complete response and prognosis in patients receiving neoadjuvant chemotherapy for early breast cancer. Br. J. Cancer 91, 2012–2017 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kurozumi, S. et al. ER, PgR, Ki67, 27Kip1, and histological grade as predictors of pathological complete response in patients with HER2-positive breast cancer receiving neoadjuvant chemotherapy using taxanes followed by fluorouracil, epirubicin, and cyclophosphamide concomitant with trastuzumab. BMC Cancer 15, 622 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Carey, L. A. et al. Clinical and translational results of CALGB 40601: A neoadjuvant phase III trial of weekly paclitaxel and trastuzumab with or without lapatinib for HER2-positive breast cancer [abstract]. J. Clin. Oncol. 31 (Suppl.), 500 (2013).

    Google Scholar 

  43. Amin, D. N. et al. Resiliency and vulnerability in the HER2-HER3 tumorigenic driver. Sci. Transl. Med. 2, 16ra7 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chien, A. J. et al. Phase I dose-escalation study of 5-day intermittent oral lapatinib therapy in patients with human epidermal growth factor receptor 2-overexpressing breast cancer. J. Clin. Oncol. 32, 1472–1479 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. White, J. & DeMichele, A. Neoadjuvant therapy for breast cancer: controversies in clinical trial design and standard of care. Am. Soc. Clin. Oncol. Educ. Book 35, e17–23 (2015).

    Article  Google Scholar 

  46. Goldhirsch, A. et al. 2 years versus 1 year of adjuvant trastuzumab for HER2-positive breast cancer (HERA): an open-label, randomised controlled trial. Lancet 382, 1021–1028 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. von Minckwitz, G. et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 30, 1796–1804 (2012).

    Article  PubMed  Google Scholar 

  48. U.S. Department of Health and Human Services. Guidance for industry. Pathological complete response in neoadjuvant treatment of high-risk early-stage breast cancer: use as an endpoint to support accelerated approval. FDA [online], (2014).

  49. von Minckwitz, G. et al. Doxorubicin with cyclophosphamide followed by docetaxel every 21 days compared with doxorubicin and docetaxel every 14 days as preoperative treatment in operable breast cancer: the GEPARDUO study of the German Breast Group. J. Clin. Oncol. 23, 2676–2685 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Untch, M. et al. Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: results from the GeparQuattro study. J. Clin. Oncol. 28, 2024–2031 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Gianni, L. et al. Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol. 15, 640–647 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Untch, M. et al. Intensive dose-dense compared with conventionally scheduled preoperative chemotherapy for high-risk primary breast cancer. J. Clin. Oncol. 27, 2938–2945 (2009).

    Article  PubMed  Google Scholar 

  53. Esposito, A., Criscitiello, C. & Curigliano, G. Highlights from the 14th St Gallen International Breast Cancer Conference 2015 in Vienna: dealing with classification, prognostication, and prediction refinement to personalize the treatment of patients with early breast cancer. ecancermedicalscience 9, 518 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Liedtke, C. et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 26, 1275–1281 (2008).

    Article  PubMed  Google Scholar 

  55. Robidoux, A. et al. Lapatinib as a component of neoadjuvant therapy for HER2-positive operable breast cancer (NSABP protocol B-41): an open-label, randomised phase 3 trial. Lancet Oncol. 14, 1183–1192 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Berruti, A. et al. Pathologic complete response as a potential surrogate for the clinical outcome in patients with breast cancer after neoadjuvant therapy: a meta-regression of 29 randomized prospective studies. J. Clin. Oncol. 32, 3883–3891 (2014).

    Article  PubMed  Google Scholar 

  57. Berry, D. A. & Hudis, C. A. Neoadjuvant therapy in breast cancer as a basis for drug approval. JAMA Oncol. 1, 875–876 (2015).

    Article  PubMed  Google Scholar 

  58. Cortazar, P. et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).

    Article  PubMed  Google Scholar 

  59. Prentice, R. L. Surrogate endpoints in clinical trials: definition and operational criteria. Stat. Med. 8, 431–440 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Freedman, L. S., Graubard, B. I. & Schatzkin, A. Statistical validation of intermediate endpoints for chronic diseases. Stat. Med. 11, 167–178 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Fleming, T. R., Prentice, R. L., Pepe, M. S. & Glidden, D. Surrogate and auxiliary endpoints in clinical trials, with potential applications in cancer and AIDS research. Stat. Med. 13, 955–968 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D. & Geys, H. The validation of surrogate endpoints in meta-analyses of randomized experiments. Biostatistics 1, 49–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Venkatraman, E. S. & Begg, C. B. Properties of a nonparametric test for early comparison of treatments in clinical trials in the presence of surrogate endpoints. Biometrics 55, 1171–1176 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Li, Y. & Taylor, J. M. Predicting treatment effects using biomarker data in a meta-analysis of clinical trials. Stat. Med. 29, 1875–1889 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bonnefoi, H. et al. Neoadjuvant treatment with docetaxel plus lapatinib, trastuzumab, or both followed by an anthracycline-based chemotherapy in HER2-positive breast cancer: results of the randomised phase II EORTC 10054 study. Ann. Oncol. 26, 325–332 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Untch, M. et al. Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised phase 3 trial. Lancet Oncol. 13, 135–144 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Majewski, I. J. et al. PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J. Clin. Oncol. 33, 1334–1339 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Salgado, R. et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO Trial. JAMA Oncol. 1, 448–454 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zardavas, D., Phillips, W. A. & Loi, S. PIK3CA mutations in breast cancer: reconciling findings from preclinical and clinical data. Breast Cancer Res. 16, 201 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ali, H. R. et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann. Oncol. 25, 1536–1543 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 26, 259–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Savas, P. et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat. Rev. Clin. Oncol. http://dx.doi.org/10.1038/nrclinonc.2015.215 (2015).

  74. Luria, S. E. & Delbruck, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Michor, F. et al. Dynamics of chronic myeloid leukaemia. Nature 435, 1267–1270 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Leder, K. et al. Fitness conferred by BCR–ABL kinase domain mutations determines the risk of pre-existing resistance in chronic myeloid leukemia. PLoS ONE 6, e27682 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Foo, J., Chmielecki, J., Pao, W. & Michor, F. Effects of pharmacokinetic processes and varied dosing schedules on the dynamics of acquired resistance to erlotinib in EGFR-mutant lung cancer. J. Thorac. Oncol. 7, 1583–1593 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Diaz, L. A. Jr et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Iwasa, Y., Nowak, M. A. & Michor, F. Evolution of resistance during clonal expansion. Genetics 172, 2557–2566 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Durrett, R. & Moseley, S. Evolution of resistance and progression to disease during clonal expansion of cancer. Theor. Popul. Biol. 77, 42–48 (2010).

    Article  PubMed  Google Scholar 

  81. Komarova, N. L. & Wodarz, D. Drug resistance in cancer: principles of emergence and prevention. Proc. Natl Acad. Sci. USA 102, 9714–9719 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Montagut, C. et al. Identification of a mutation in the extracellular domain of the Epidermal Growth Factor Receptor conferring cetuximab resistance in colorectal cancer. Nat. Med. 18, 221–223 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Turke, A. B. et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17, 77–88 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 7, 302ra133 (2015).

    Article  PubMed  Google Scholar 

  86. Olsson, E. et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol. Med. 7, 1034–1047 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. De Mattos-Arruda, L. et al. Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of -principle. Ann. Oncol. 25, 1729–1735 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. De Mattos-Arruda, L. et al. Circulating tumour cells and cell-free DNA as tools for managing breast cancer. Nat. Rev. Clin. Oncol. 10, 377–389 (2013).

    CAS  PubMed  Google Scholar 

  89. Crowley, E., Di Nicolantonio, F., Loupakis, F. & Bardelli, A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 10, 472–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. De Mattos-Arruda et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat. Commun. 6, 8839 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Chen, Z. et al. Analysis of cancer mutation signatures in blood by a novel ultra-sensitive assay: monitoring of therapy or recurrence in non-metastatic breast cancer. PLoS ONE 4, e7220 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Beaver, J. A. et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin. Cancer Res. 20, 2643–2650 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Geyer, F. C. et al. Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J. Pathol. 220, 562–573 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Janiszewska, M. et al. In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat. Genet. (2015).

  97. Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Gonzalez-Angulo, A. M. et al. PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol. Cancer Ther. 10, 1093–1101 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Yates, L. R. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21, 751–759 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Niikura, N. et al. Changes in tumor expression of HER2 and hormone receptors status after neoadjuvant chemotherapy in 21,755 patients from the Japanese Breast Cancer Registry. Ann. Oncol. http://dx.doi.org/10.1093/annonc/mdv611 (2015).

  103. Ng, C. K. et al. Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol. 16, 107 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Burrell, R. A. & Swanton, C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol. Oncol. 8, 1095–1111 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Yap, T. A., Gerlinger, M., Futreal, P. A., Pusztai, L. & Swanton, C. Intratumor heterogeneity: seeing the wood for the trees. Sci. Transl. Med. 4, 127ps10 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Fisher, R., Pusztai, L. & Swanton, C. Cancer heterogeneity: implications for targeted therapeutics. Br. J. Cancer 108, 479–485 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Alizadeh, A. A. et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 21, 846–853 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Almendro, V. et al. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep. 6, 514–527 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Mayer, E. L. et al. Long-term follow-up after preoperative trastuzumab and chemotherapy for HER2-overexpressing breast cancer. Clin. Breast Cancer 15, 24–30 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Rouzier, R. et al. Incidence and prognostic significance of complete axillary downstaging after primary chemotherapy in breast cancer patients with T1 to T3 tumors and cytologically proven axillary metastatic lymph nodes. J. Clin. Oncol. 20, 1304–1310 (2002).

    Article  PubMed  Google Scholar 

  112. Symmans, W. F. et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J. Clin. Oncol. 25, 4414–4422 (2007).

    Article  PubMed  Google Scholar 

  113. De Mattos-Arruda, L. & Rodon, J. Pilot studies for personalized cancer medicine: focusing on the patient for treatment selection. Oncologist 18, 1180–1188 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Park, J. W. & Liu, M. C. Neratinib plus standard neoadjuvant therapy for high-risk breast cancer: efficacy results from the I-SPY 2 trial [abstract]. 72 (Suppl.), CT227 (2014).

  115. Sahin, O. et al. Biomarker-guided sequential targeted therapies to overcome therapy resistance in rapidly evolving highly aggressive mammary tumors. Cell Res. 24, 542–559 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching the data for the article, discussions of content, and the writing, review and editing of the manuscript.

Corresponding author

Correspondence to Leticia De Mattos-Arruda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Mattos-Arruda, L., Shen, R., Reis-Filho, J. et al. Translating neoadjuvant therapy into survival benefits: one size does not fit all. Nat Rev Clin Oncol 13, 566–579 (2016). https://doi.org/10.1038/nrclinonc.2016.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.35

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer