Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Radiation-induced bystander effects — implications for cancer

Abstract

The term radiation-induced bystander effects describes a situation where cells that have not been directly exposed to ionizing radiation behave as though they have been exposed: they die or they show chromosomal instability and other abnormalities. The bystander cells might be immediately adjacent or might be some distance away from the exposed cell. Although the nature of the communication system that is involved in producing these responses is not yet known, there is strong evidence for a chemical signalling process that transmits information from the irradiated cell to neighbouring cells. The bystander effect has several important implications for radiation protection, radiotherapy and diagnostic radiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two views of how radiation effects are perpetuated.
Figure 2: Biological effects of a radiation beam.
Figure 3: Exposure of unirradiated cells to culture medium harvested from irradiated cells causes release of calcium.

Similar content being viewed by others

References

  1. Nagasawa, H. & Little, J. B. Induction of sister chromatid exchanges by extremely low doses of α-particles. Cancer Res. 52, 6394–6396 (1992).

    CAS  PubMed  Google Scholar 

  2. Deshpande, A., Goodwin, E. H., Bailey, S. M., Marrone, B. L. & Lehnert, B. E. α-particle-induced sister chromatid exchange in normal human lung fibroblasts: evidence for an extranuclear target. Radiat Res. 145, 260–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Mothersill, C. & Seymour, C. B. Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int. J. Radiat. Biol. 71, 421–427 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Sawant, S. G. Randers-Pehrson, G., Geard, C. R., Brenner, D. J. & Hall, E. J. The bystander effect in radiation oncogenesis: I. Transformation in C3H 10T1/2 cells in vitro can be initiated in the unirradiated neighbors of irradiated cells. Radiat Res. 155, 397–401 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, H. et al. Induction of a bystander mutagenic effect of α-particles in mammalian cells. Proc. Natl Acad. Sci. USA 97, 2099–2104 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Nagasawa, H. & Little, J. B. Bystander effect for chromosomal aberrations induced in wild-type and repair deficient CHO cells by low fluences of α particles. Mutat Res. 508, 121–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Seymour, C. B. & Mothersill, C. Delayed expression of lethal mutations and genomic instability in the progeny of human epithelial cells that survived in a bystander-killing environment. Radiat. Oncol. Investig. 5, 106–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Lorimore, S. A. et al. Chromosomal instability in the descendants of unirradiated surviving cells after α-particle irradiation. Proc. Natl Acad. Sci. USA 95, 5730–5733 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Huo, L., Nagasawa, H. & Little, J. B. HPRT mutants induced in bystander cells by very low fluences of α particles result primarily from point mutations. Radiat Res. 156, 521–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Parsons, W. B., Watkins, C. H., Pease, G. L. & Childs, D. S. Changes in sternal bone marrow following rontegan-ray therapy to the spleen in chronic granulocytic leukaemia. Cancer 7, 179–189 (1954).

    Article  PubMed  Google Scholar 

  11. Goh, K. & Sumner, H. Breaks in normal human chromosomes: are they induced by a transferable substance in the plasma of persons exposed to total body irradiation? Radiat. Res. 35, 171–181 (1968).

    Article  CAS  PubMed  Google Scholar 

  12. Hollowell, J. G. & Littlefield, L. G. Chromosome damage induced by plasma of X-rayed patient: an indirect effect of radiation. Proc. Soc. Exp. Biol. Med. 129, 240–244 (1968).

    Article  PubMed  Google Scholar 

  13. Lyng, F. M., Seymour, C. B. & Mothersill, C. Production of a signal by irradiated cells which leads to a response in unirradiated cells characteristic of apoptosis. Brit. J. Cancer 83, 1223–1230 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Lyng, F. M., Seymour, C. B. & Mothersill, C. Initiation of apoptosis in cells exposed to medium from the progeny of irradiated cells: a possible mechanism for 'bystander' induced instability? Radiat. Res. 157, 365–370 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Mothersill, C. & Seymour, C. B. Radiation-induced bystander effects: past history and future perspectives. Radiat. Res. 155, 759–767 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Goldberg, Z. & Lehnert, B. E. Radiation-induced effects in unirradiated cells: a review and implications in cancer. Int. J. Oncol. 21, 337–349 (2002).

    CAS  PubMed  Google Scholar 

  17. Prise, K. M. et al. Investigating the cellular effects of isolated radiation tracks using microbeam techniques. Adv. Space Res. 30, 871–876 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Mothersill, C. & Seymour, C. B. Cell–cell contact during γ-irradiation is not required to induce a bystander effect in normal human keratinocytes: Evidence for release of a survival controlling signal into medium. Radiat. Res. 149, 256–262 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Nagar, S., Smith, L. E. & Morgan, W. F. Characterization of a novel epigenetic effect of ionizing radiation: the death-inducing effect. Cancer Res. 63, 324–328 (2003).

    CAS  PubMed  Google Scholar 

  20. Mothersill, C. et al. Individual variation in the production of a 'bystander signal' following irradiation of primary cultures of normal human urothelium. Carcinogenesis 22, 1465–1471 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Watson, G. E., Lorimore, S. A., MacDonald, D. A. & Wright, E. G. Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionising radiation. Cancer Res. 60, 5608–5611 (2000).

    CAS  PubMed  Google Scholar 

  22. Bridges, B. A. Radiation and germline mutation at repeat sequences: are we in the middle of a paradigm shift? Radiat Res. 156, 631–641 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Denekamp, J. & Dasu, A. Inducible repair and the two forms of tumour hypoxia: time for a paradigm shift. Acta Oncol. 38, 903–918 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Elkind, M. M. Cell-cycle sensitivity, recovery from radiation damage and a new paradigm for risk assessment. Int. J. Radiat. Biol. 71, 657–665 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Little, J. B., Nagasawa, H., Li, G. C. & Chen, D. J. Involvement of the nonhomologous end joining DNA repair pathway in the bystander effect for chromosomal aberrations. Radiat Res. 159, 262–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Mothersill, C., Seymour, R. J. & Seymour, C. B. Radiation-induced bystander effects in repair deficient cell lines. Radiat. Res. (in the press).

  27. Azzam, E. I., De Toledo, S. M., Spitz, D. R. & Little, J. B. Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from α-particle-irradiated normal human fibroblast cultures. Cancer Res. 62, 5436–5442 (2002).

    CAS  PubMed  Google Scholar 

  28. Magor, B. G., De Tomaso, A., Rinkevich, B. & Weissman, I. L. Allorecognition in colonial tunicates: protection against predatory cell lineages? Immunol Rev. 167, 69–79 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Ogmundsdottir, H. M., Zoega, G. M., Gissurarson, S. R. & Ingolfsdottir, K. Anti-proliferative effects of lichen-derived inhibitors of 5-lipoxygenase on malignant cell lines and mitogen-stimulated lymphocytes. J. Pharm. Pharmacol. 50, 107–115 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Wiens, M., Krasko, A., Perovic, S. & Muller, W. E. Caspase-mediated apoptosis in sponges: cloning and function of the phylogenetic oldest apoptotic proteases from Metazoa. Biochim. Biophys. Acta 1593, 179–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Rothkamm, K. & Lobrich, M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc. Natl Acad. Sci. USA 100, 5057–5062 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Wolff, S. Adaptation to ionizing radiation induced by prior exposure to very low doses. Chin. Med. J. 107, 425–430 (1994).

    CAS  PubMed  Google Scholar 

  33. Mothersill, C. & Seymour, C. B. Bystander and delayed effects after fractionated radiation exposure. Radiat. Res. 158, 626–633 (2002)

    Article  CAS  PubMed  Google Scholar 

  34. Sinclair, W. K. The linear no-threshold response: why not linearity? Med Phys. 25, 285–290 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Clutton, S. M., Townsend, K. M. S, Walker, C., Ansell, J. D. & Wright, E. G. Radiation-induced genomic instability and persistent oxidative stress in primary bone marrow cultures. Carcinogenesis 17, 1633–1639 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Limoli, C. L. et al. Apoptosis, reproductive failure, and oxidative stress in Chinese hamster ovary cells with compromised genomic integrity. Cancer Res. 58, 3712–3718 (1998).

    CAS  PubMed  Google Scholar 

  37. Mothersill, C. et al. Involvement of energy metabolism in the production of 'bystander effects' by radiation. Br. J. Cancer 82, 1740–1746 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Iyer, R., Lehnert, B. E. & Svensson, R. Factors underlying the cell growth-related bystander responses to α particles. Cancer Res. 60, 1290–1298 (2000).

    CAS  PubMed  Google Scholar 

  39. Lyng, F. M., Seymour, C. B. & Mothersill, C. Early events in the apoptotic cascade initiated in cells treated with medium from the progeny of irradiated cells. Radiat. Prot. Dosimetry 99, 169–172 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the following sources in Ireland and Europe: the Science Foundation Ireland; Saint Luke's Institute of Cancer Research; the Cancer Research Advancement Board; and the European Union Radiation Protection Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmel Mothersill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

prostate cancer

LocusLink

p53

ATM

WAF1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seymour, C., Mothersill, C. Radiation-induced bystander effects — implications for cancer. Nat Rev Cancer 4, 158–164 (2004). https://doi.org/10.1038/nrc1277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing