Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

One-step 18F labeling of biomolecules using organotrifluoroborates

Abstract

Herein we present a general protocol for the functionalization of biomolecules with an organotrifluoroborate moiety so that they can be radiolabeled with aqueous 18F fluoride (18F) and used for positron emission tomography (PET) imaging. Among the β+-emitting radionuclides, fluorine-18 (18F) is the isotope of choice for PET, and it is produced, on-demand, in many hospitals worldwide. Organotrifluoroborates can be 18F-labeled in one step in aqueous conditions via 18F–19F isotope exchange. This protocol features a recently designed ammoniomethyltrifluoroborate, and it describes the following: (i) a synthetic strategy that affords modular synthesis of radiolabeling precursors via a copper-catalyzed 'click' reaction; and (ii) a one-step 18F-labeling method that obviates the need for HPLC purification. Within 30 min, 18F-labeled PET imaging probes, such as peptides, can be synthesized in good chemical and radiochemical purity (>98%), satisfactory radiochemical yield of 20–35% (n > 20, non-decay corrected) and high specific activity of 40–111 GBq/μmol (1.1–3.0 Ci/μmol). The entire procedure, including the precursor preparation and 18F radiolabeling, takes 7–10 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5: HPLC chromatograms of Sep-Pak-purified 18F-AMBF3-TATE.
Figure 6: [18F]AMBF3-TATE shows specific uptake in AR42J xenografts (dotted ovals) and low uptake in normal tissues.

Similar content being viewed by others

References

  1. Tarkin, J.M., Joshi, F.R. & Rudd, J.H.F. PET imaging of inflammation in atherosclerosis. Nat. Rev. Cardiol. 11, 443–457 (2014).

    Article  CAS  Google Scholar 

  2. Cai, L.S., Lu, S.Y. & Pike, V.W. Chemistry with F-18 fluoride ion. Eur. J. Org. Chem. 17, 2853–2873 (2008).

    Article  Google Scholar 

  3. Tsien, R.Y. Imagining imaging's future. Nat. Cell Biol. 4, S16–S21 (2003).

    Google Scholar 

  4. Garrison, J.C. et al. In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using Cu-64 bombesin analogs: Side-by-side comparison of the CB-TE2A and DOTA chelation systems. J. Nucl. Med. 48, 1327–1337 (2007).

    Article  CAS  Google Scholar 

  5. Jacobson, O., Kiesewetter, D.O. & Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug. Chem. 26, 1–18 (2014).

    Article  Google Scholar 

  6. Brabez, N. et al. Synthesis and evaluation of cholecystokinin trimers: a multivalent approach to pancreatic cancer detection and treatment. Biorg. Med. Chem. Lett. 23, 2422–2425 (2013).

    Article  CAS  Google Scholar 

  7. Liu, Z. et al. Kit-like 18F-labeling of RGD-19F-arytrifluroborate in high yield and at extraordinarily high specific activity with preliminary in vivo tumor imaging. Nucl. Med. Biol. 40, 841–849 (2013).

    Article  CAS  Google Scholar 

  8. Wangler, C. et al. One-step F-18 labeling of peptides for positron emission tomography imaging using the SiFA methodology. Nat. Protoc. 7, 1946–1955 (2012).

    Article  Google Scholar 

  9. Lee, E. et al. A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science 334, 639–642 (2011).

    Article  CAS  Google Scholar 

  10. Huiban, M. et al. A broadly applicable [18F]trifluoromethylation of aryl and heteroaryl iodides for PET imaging. Nat. Chem. 5, 941–944 (2013).

    Article  CAS  Google Scholar 

  11. McBride, W.J., D'Souza, C.A., Karacay, H., Sharkey, R.M. & Goldenberg, D.M. New lyophilized kit for rapid radiofluorination of peptides. Bioconjug. Chem. 23, 538–547 (2012).

    Article  CAS  Google Scholar 

  12. Jacobson, O. et al. Rapid and simple one-step F-18 labeling of peptides. Bionconj. Chem. 22, 422–428 (2011).

    Article  CAS  Google Scholar 

  13. Pascali, G. et al. Optimization of nucleophilic 18F radiofluorinations using a microfluidic reaction approach. Nat. Protoc. 9, 2017–2029 (2014).

    Article  CAS  Google Scholar 

  14. Richarz, R. et al. Neither azeotropic drying, nor base nor other additives: a minimalist approach to 18F labeling. Org. Biomol. Chem. 12, 8094–8099 (2014).

    Article  CAS  Google Scholar 

  15. Glaser, M. et al. Three methods for 18F labeling of the HER2-binding affibody molecule ZHER2:2891 including preclinical assessment. J. Nucl. Med. 54, 1981–1988 (2013).

    Article  CAS  Google Scholar 

  16. D'Souza, C.A., McBride, W.J., Sharkey, R.M., Todaro, L.J. & Goldenberg, D.M. High-yielding aqueous F-18 labeling of peptides via (AlF)-F-18 chelation. Bioconjug. Chem. 22, 1793–1803 (2011).

    Article  CAS  Google Scholar 

  17. Lang, L.X. et al. Comparison study of F-18 FAl-NOTA-PRGD2, F-18 FPPRGD2, and Ga-68 Ga-NOTA-PRGD2 for PET Imaging of U87MG tumors in mice. Bioconjug. Chem. 22, 2415–2422 (2011).

    Article  CAS  Google Scholar 

  18. Liu, Z. et al. An organotrifluoroborate for broadly applicable one-step 18F labeling. Angew. Chem. Int. Ed. Engl. 53, 11876–11880 (2014).

    Article  CAS  Google Scholar 

  19. Ting, R., Adam, M.J., Ruth, T.J. & Perrin, D.M. Arylfluoroborates and alkylfluorosilicates as potential PET imaging agents: high-yielding aqueous biomolecular 18F labeling. J. Am. Chem. Soc. 127, 13094–13095 (2005).

    Article  CAS  Google Scholar 

  20. Li, Y. et al. Towards kit-like F-18 labeling of marimastat, a noncovalent inhibitor drug for in vivo PET imaging cancer associated matrix metalloproteases. MedChemComm 2, 942–949 (2011).

    Article  CAS  Google Scholar 

  21. Ting, R. et al. Towards [18F]-labeled aryltrifluoroborate radiotracers–in vivo PET imaging of stable aryltrifluoroborate clearance in mice. J. Am. Chem. Soc. 130, 12045–12055 (2008).

    Article  CAS  Google Scholar 

  22. Liu, Z. et al. From minutes to years: predicting organotrifluoroborate solvolysis rates. Chem. Eur. J. 21, 3924–3928 (2015).

    Article  CAS  Google Scholar 

  23. Liu, Z. et al. A new F-18-heteroaryltrifluoroborate radio-prosthetic with greatly enhanced stability that is labelled by F-18–F-19-isotope exchange in good yield at high specific activity. MedChemComm 5, 171–179 (2014).

    Article  CAS  Google Scholar 

  24. Liu, Z.B. et al. Stoichiometric leverage: Rapid 18F-aryltrifluoroborate radiosynthesis at high specific activity for click conjugation. Angew. Chem. Int. Ed. Engl. 52, 2303–2307 (2013).

    Article  CAS  Google Scholar 

  25. Schirrmacher, R., Wangler, C. & Schirrmacher, E. Recent developments and trends in F-18-radiochemistry: syntheses and applications. Mini Rev. Org. Chem. 4, 317–329 (2007).

    Article  CAS  Google Scholar 

  26. Richter, S. & Wuest, F. 18F-labeled peptides: the future is bright. Molecules 19, 20536–20556 (2014).

    Article  Google Scholar 

  27. Wagner, S. et al. A new 18F-labelled derivative of the MMP inhibitor CGS 27023A for PET: radiosynthesis and initial small-animal PET studies. Appl. Radiat. Isot. 67, 606–610 (2009).

    Article  CAS  Google Scholar 

  28. Schirrmacher, R. et al. F-18-labeling of peptides by means of an organosilicon-based fluoride acceptor. Angew. Chem. Int. Ed. Engl. 45, 6047–6050 (2006).

    Article  CAS  Google Scholar 

  29. Liu, Z. et al. Preclinical evaluation of a high-affinity 18F-trifluoroborate octreotate derivative for somatostatin receptor imaging. J. Nucl. Med. 55, 1499–1505 (2014).

    Article  CAS  Google Scholar 

  30. Liu, Z. et al. Dual mode fluorescent 18F-PET tracers: efficient modular synthesis of rhodamine-[cRGD]2-[18F]-organotrifluoroborate, rapid, and high yielding one-step 18F-labeling at high specific activity, and correlated in vivo pet imaging and ex vivo fluorescence. Bioconjug. Chem. 25, 1951–1962 (2014).

    Article  CAS  Google Scholar 

  31. Liu, Z. et al. 18F-Trifluoroborate derivatives of [des-Arg10]kallidin for imaging bradykinin B1 receptor expression with positron emission tomography. Mol. Pharm. 12, 974–982 (2015).

    Article  CAS  Google Scholar 

  32. Chin, F.T. et al. First experience with clinical-grade F-18 FPP(RGD)2: an automated multi-step radiosynthesis for clinical PET studies. Mol. Imaging Biol. 14, 88–95 (2012).

    Article  Google Scholar 

  33. Li, Y. et al. Alkyne-18F-ArBF3 for one-pot click 18F-labeling of bombesin for in vivo PET imaging of tumors expressing the GRP-Receptor. Am. J. Nucl. Med. Mol. Imaging 3, 57–70 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, Z. et al. Rapid, one-step, high yielding 18F-labeling of an aryltrifluoroborate bioconjugate by isotope exchange at very high specific activity. J. Labelled Comp. Radiopharm. 14, 491–497 (2012).

    Article  CAS  Google Scholar 

  35. Monti, S.M., Supuran, C.T. & De Simone, G. Carbonic anhydrase IX as a target for designing novel anticancer drugs. Curr. Med. Chem. 19, 821–830 (2012).

    Article  CAS  Google Scholar 

  36. Stillebroer, A.B., Mulders, P.F.A., Boerman, O.C., Oyen, W.J.G. & Oosterwijk, E. Carbonic anhydrase IX in renal cell carcinoma: implications for prognosis, diagnosis, and therapy. Eur. Urol. 58, 75–83 (2010).

    Article  CAS  Google Scholar 

  37. Lam, K.S. et al. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82–84 (1991).

    Article  CAS  Google Scholar 

  38. Lee, S., Xie, J. & Chen, X.Y. Peptide-based probes for targeted molecular imaging. Biochemistry 49, 1364–1376 (2009).

    Article  Google Scholar 

  39. Kilbourn, M.R., Hood, J.T. & Welch, M.J. A simple 18O water target for 18F production. Appl. Radiat. Isot. 35, 599–602 (1984).

    Article  CAS  Google Scholar 

  40. Wuest, F., Berndt, M., Bergmann, R., van den Hoff, J. & Pietzsch, J. Synthesis and application of 18F FDG-maleimidehexyloxime (18F FDG-MHO): A 18F FDG-based prosthetic group for the chemoselective 18F-labeling of peptides and proteins. Bioconjug. Chem. 19, 1202–1210 (2008).

    Article  CAS  Google Scholar 

  41. Lewis, J.S., Srinivasan, A., Schmidt, M.A. & Anderson, C.J. In vitro and in vivo evaluation of Cu-64-TETA-Tyr3-octreotate. A new somatostatin analog with improved target tissue uptake. Nucl. Med. Biol. 26, 267–273 (1999).

    Article  CAS  Google Scholar 

  42. Coin, I., Beyermann, M. & Bienert, M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247–3256 (2007).

    Article  CAS  Google Scholar 

  43. Bräse, S., Gil, C., Knepper, K. & Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed. Engl. 44, 5188–5240 (2005).

    Article  Google Scholar 

  44. Scriven, E.F.V. & Turnbull, K. Azides: their preparation and synthetic uses. Chem. Rev. 88, 297–368 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Sciences and Engineering Research Council, and the Canadian Cancer Society Research Institute, with contributions from the intramural research program at National Institute of Biomedical Imaging and Bioengineering, US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Z.L., D.M.P., K.-S.L., F.B. and X.C. conceived and designed this research; Z.L. and M.P. performed the experiments; Z.L., K.-S.L. and F.B. analyzed the data; and Z.L., D.M.P., D.O.K. and X.C. wrote the manuscript.

Corresponding authors

Correspondence to Zhibo Liu, David M Perrin or Xiaoyuan Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Lin, KS., Bénard, F. et al. One-step 18F labeling of biomolecules using organotrifluoroborates. Nat Protoc 10, 1423–1432 (2015). https://doi.org/10.1038/nprot.2015.090

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.090

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing