Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface plasmon polariton analogue to Young's double-slit experiment

Abstract

When a light wave strikes a metal film it can, under appropriate conditions, excite a surface plasmon polariton (SPP)—a surface electromagnetic wave that is coupled to the free electrons in the metal. Such SPPs are involved in a wide range of phenomena1, including nanoscale optical waveguiding2,3,4,5, perfect lensing6, extraordinary optical transmission7, subwavelength lithography8 and ultrahigh-sensitivity biosensing9. However, before the full potential of technology based on SPPs (termed ‘plasmonics’) can be realized, many fundamental questions regarding the interaction between light and matter at the nanoscale need to be answered. For over 200 years, Young's double-slit experiment has been a valuable pedagogical tool for demonstrating the wave nature of light10. Here, we perform a double-slit experiment with SPPs to reveal the strong analogy between SPP propagation along the surface of metallic structures and light propagation in conventional dielectric components (such as glass waveguides). This allows us to construct a general framework to describe the propagation, diffraction and interference of SPPs. It also suggests that there is an effective diffraction limit for the lateral confinement of SPPs on metal stripe waveguides, and justifies the use of well-developed concepts from conventional optics and photonics in the design of new plasmonic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of a double-slit experiment for surface plasmon polaritons (SPPs).
Figure 2: Electromagnetic simulation of the leaky surface plasmon polariton (SPP) mode supported by the two metal stripes used in the double-slit experiment.
Figure 3: Double-slit experiment and simulation.

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  2. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  CAS  Google Scholar 

  3. Takahara, J., Yamagishi, S., Taki, H., Morimoto, A. & Kobayashi, T. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997).

    Article  CAS  Google Scholar 

  4. Takahara, J. & Kobayashi, T. Low-dimensional optical waves and nano-optical circuits. Opt. Photonics News 15, 54–59 (2004).

    Article  Google Scholar 

  5. Zia, R., Schuller, J. A., Chandran, A. & Brongersma, M. L. Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (July/August 2006).

    Article  CAS  Google Scholar 

  6. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  CAS  Google Scholar 

  7. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  CAS  Google Scholar 

  8. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  CAS  Google Scholar 

  9. Liedberg, B., Nylander, C. & Lundstrom, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983).

    Article  CAS  Google Scholar 

  10. Young, T. A Course of Lectures on Natural Philosophy and the Mechanical Arts (J. Johnson, London, 1807).

  11. Krenn, J. R. et al. Non-diffraction-limited light transport by gold nanowires. Europhys. Lett. 60, 663–669 (2002).

    Article  CAS  Google Scholar 

  12. Weeber, J. C., Lacroute, Y. & Dereux, A. Optical near-field distributions of surface plasmon waveguide modes. Phys. Rev. B 68, 115401 (2003).

    Article  Google Scholar 

  13. Zia, R., Schuller, J. A. & Brongersma, M. L. Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides. Phys. Rev. B 74, 165415 (2006).

    Article  Google Scholar 

  14. Joensson, C. Elektroneninterferenzen an mehreren kunstlich hergestellten feinspalten. Z. Phys. 161, 454–474 (1961).

    Article  Google Scholar 

  15. Keith, D. W., Ekstrom, C. R., Turchette, Q. A. & Pritchard, D. E. An interferometer for atoms. Phys. Rev. Lett. 66, 2693–2696 (1991).

    Article  CAS  Google Scholar 

  16. Schouten, H. F. et al. Plasmon-assisted two-slit transmission: Young's experiment revisited. Phys. Rev. Lett. 94, 053901 (2005).

    Article  CAS  Google Scholar 

  17. Zia, R., Selker, M. D. & Brongersma, M. L. Leaky and bound modes of surface plasmon waveguides. Phys. Rev. B 71, 165431 (2005).

    Article  Google Scholar 

  18. Burke, J. J., Stegeman, G. I. & Tamir, T. Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33, 5186–5201 (1986).

    Article  CAS  Google Scholar 

  19. Zia, R., Chandran, A. & Brongersma, M. L. Dielectric waveguide model for guided surface polaritons. Opt. Lett. 30, 1473–1475 (2005).

    Article  Google Scholar 

  20. Anemogiannis, E., Glytsis, E. N. & Gaylord, T. K. Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method. J. Lightwave Technol. 17, 929–941 (1999).

    Article  Google Scholar 

  21. Boltasseva, A. et al. Integrated optical components utilizing long-range surface plasmon polaritons. J. Lightwave Technol. 23, 413–422 (2005).

    Article  Google Scholar 

  22. Karalis, A., Lidorikis, E., Ibanescu, M., Joannopoulos, J. D. & Soljacic, M. Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air. Phys. Rev. Lett. 95, 063901 (2005).

    Article  Google Scholar 

  23. Goodman, J. Introduction to Fourier Optics (McGraw-Hill, New York, 1988).

  24. Veronis, G. & Fan, S. H. Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides. Appl. Phys. Lett. 87, 131102 (2005).

    Article  Google Scholar 

  25. Veronis, G. & Fan, S. H. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt. Lett. 30, 3359–3361 (2005).

    Article  Google Scholar 

  26. Pile, D. F. P. et al. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87, 261114 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a DoD MURI sponsored by the AFOSR (F49550-04-10437) and an NSF Career Award (ECS-0348800). The authors thank Mark D. Selker, Jon A. Schuller and Anu Chandran for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.Z. and M.L.B. conceived the experiments together. R.Z. conducted the experiments and simulations. R.Z. and M.L.B. co-wrote the manuscript.

Corresponding authors

Correspondence to Rashid Zia or Mark L. Brongersma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary discussion (PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zia, R., Brongersma, M. Surface plasmon polariton analogue to Young's double-slit experiment. Nature Nanotech 2, 426–429 (2007). https://doi.org/10.1038/nnano.2007.185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing